
MonetDB Server Reference Manual
Version 5.0

The MonetDB Development Team

Last updated: Feb 5, 2008
Portions created by CWI are Copyright (C) 1997-July 2008 CWI. Copyright August 2008-
2009 MonetDB B.V.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Disclaimer The reference manual and underlying source code base are still under develop-
ment. This may lead to incomplete and inconsistencies descriptions, for which we apologize
in advance. You can help improving the manual using the MonetDB mailing list.

mailto:monetdb-users@lists.sourceforge.net

i

Table of Contents

1 General Introduction . 1
1.1 Intended Audience . 1
1.2 How to read this manual . 1
1.3 Features and Limitations . 2

1.3.1 When to consider MonetDB ? . 2
1.3.2 When not to consider MonetDB ? . 3
1.3.3 What are key features of MonetDB . 3
1.3.4 Size Limitations for MonetDB . 4

1.4 A Brief History of MonetDB . 4
1.5 Manual Generation . 5

1.5.1 Conventions and Notation . 6
1.5.2 Additional Resources . 6

1.6 Downloads and Installation . 6
1.6.1 Developers Distribution . 7
1.6.2 Experts . 7

1.7 How To Start with MonetDB . 8
1.8 The Suite . 8
1.9 Prerequisites . 8
1.10 Space Requirements . 10
1.11 Getting the Software . 10
1.12 CVS checkout . 10
1.13 Bootstrap, Configure and Make . 10
1.14 Bootstrap . 11
1.15 Configure . 11
1.16 Configure defaults and recommendations . 12
1.17 Make . 12
1.18 Testing the Build . 13
1.19 Install . 13
1.20 Testing the Installation . 13
1.21 Usage . 13
1.22 Troubleshooting . 14
1.23 Reporting Problems . 16
1.24 Building MonetDB On Windows . 16
1.25 Introduction . 16
1.26 buildtools . 16
1.27 MonetDB . 17
1.28 clients . 17
1.29 MonetDB4 . 17
1.30 MonetDB5 . 17
1.31 sql . 17
1.32 pathfinder . 17
1.33 java . 17
1.34 geom . 17

ii

1.35 testing . 17
1.36 Prerequisites . 18
1.37 CVS (Concurrent Version System) . 18
1.38 Compiler . 18
1.39 Python . 18
1.40 Bison . 18
1.41 Flex . 18
1.42 Pthreads . 19
1.43 Diff . 19
1.44 Patch . 19
1.45 PsKill . 19
1.46 PCRE (Perl Compatible Regular Expressions) 19
1.47 OpenSSL . 20
1.48 libxml2 . 20
1.49 geos (Geometry Engine Open Souce) . 21
1.50 Optional Packages . 21
1.51 iconv . 21
1.52 zlib . 22
1.53 Perl . 22
1.54 PHP . 22
1.55 SWIG (Simplified Wrapper and Interface Generator) 23
1.56 Java . 23
1.57 Apache Ant . 23
1.58 Build Environment . 23
1.59 Placement of Sources . 23
1.60 Build Process . 23
1.61 Environment Variables . 24
1.62 Compiler . 24
1.63 Internal Variables . 24
1.64 PATH and PYTHONPATH . 25
1.65 Compilation . 26
1.66 Building and Installing Buildtools . 26
1.67 Building and Installing the Other Components 26
1.68 Building Installers . 27

1.68.1 Daily Builds . 28
1.68.1.1 Stability . 29
1.68.1.2 Portability . 29

1.69 Development Roadmap . 30
1.69.1 Server Roadmap . 30
1.69.2 SQL Roadmap . 30
1.69.3 Embedded MonetDB Roadmap . 31

1.70 MonetDB Version 5 . 31
1.71 Design Considerations . 31
1.72 Architecture Overview . 32
1.73 MonetDB Assembly Language (MAL) . 33
1.74 Execution Engine . 34
1.75 Session Scenarios . 35
1.76 Scenario management . 35

iii

1.77 Server Management . 36
1.77.1 Start and Stop the Server . 36
1.77.2 Database Dumps . 38
1.77.3 Server Architecture . 38
1.77.4 Database Configuration . 38
1.77.5 Checkpoint and Recovery . 39
1.77.6 Embedded Server . 39

1.77.6.1 Mbedded Example . 39
1.77.6.2 Limitations for Embedded MonetDB 42

2 Client Interfaces . 43
2.1 The Mapi Client Utility . 43

2.1.1 Online help . 45
2.2 Jdbc Client . 45

3 MonetDB Assembly Language (MAL) 48
3.1 MAL Literals . 48
3.2 MAL Variables . 48
3.3 Instructions . 49
3.4 MAL Flow-of-control . 49
3.5 Exception handling . 51

3.5.1 Exception control . 51
3.5.2 Builtin exceptions . 52

3.6 Functions . 52
3.6.1 Polymorphic Functions . 53
3.6.2 C functions . 53

3.7 Factories . 54
3.7.1 Factory Ownership . 55
3.7.2 Complex Factories . 56
3.7.3 Materialized Views . 57

3.8 Type implementation . 57
3.9 MAL Type System . 58
3.10 Type Resolution . 58

3.10.1 User Defined Types . 59
3.10.2 Defining your own types . 59

3.11 Boxed Variables . 59
3.11.1 Session Box . 61
3.11.2 Garbage Collection . 61
3.11.3 Globale Environment . 62

3.12 Property Management . 62
3.13 Properties at the MAL level . 64
3.14 The cost model problem . 65
3.15 SQL case . 65
3.16 Implementation rules . 65
3.17 Property ADT implementation . 65
3.18 Predefined properties . 66

iv

4 The MAL Interpreter . 67
4.1 MAL API . 67
4.2 Exception handling . 67
4.3 Garbage collection . 68
4.4 MAL runtime stack . 68

5 The MAL Optimizer . 70
5.1 The Optimizer Landscape . 70

5.1.1 Optimizer Dependencies . 73
5.1.2 Optimizer Building Blocks . 74
5.1.3 Building Your Own Optimizer . 75
5.1.4 Optimizer framework . 75
5.1.5 Lifespan analysis . 76
5.1.6 Flow analysis . 77

5.2 Optimizer Toolkit . 77
5.2.1 Access mode optimization . 77
5.2.2 Accumulator Evaluations . 77
5.2.3 Alias Removal . 78
5.2.4 Code Factorization . 79
5.2.5 Coercion Removal . 80
5.2.6 Common Subexpression Elimination . 80
5.2.7 Constant Expression Evaluation . 81
5.2.8 Costmodel Approach . 81
5.2.9 The dataflow optimizer . 82
5.2.10 Dead Code Removal . 82
5.2.11 Emptyset Reduction . 83
5.2.12 SQL specifics . 84
5.2.13 Garbage Collection . 84
5.2.14 Heuristic rewrites rules . 85
5.2.15 Join Paths . 85
5.2.16 Macro and Orcam Processing . 86
5.2.17 Known issues . 87

5.3 Memo-based Query Execution . 87
5.3.1 Merge Tables . 89
5.3.2 Multiplex Compilation . 90
5.3.3 BAT Partitions . 91
5.3.4 Peephole optimization . 91
5.3.5 Query Execution Plans . 92
5.3.6 Range Propagation . 93
5.3.7 The recycler . 93
5.3.8 Optimizer code wrapper . 99
5.3.9 Remote Queries . 100
5.3.10 Singleton Set Reduction . 100
5.3.11 Stack Reduction . 101
5.3.12 Strength Reduction . 101

v

6 The MAL Debugger . 103
6.1 Program Debugging . 103
6.2 Handling Breakpoints . 106
6.3 Profile Switches . 106
6.4 Program Inspection . 107
6.5 Runtime Inspection and Reflection . 108
6.6 Debugger Attachment . 109

7 The MAL Profiler . 111
7.1 Event Filtering . 111
7.2 Event Caching . 112
7.3 Monitoring Variables . 113
7.4 The Stethoscope . 113

8 The MAL Modules . 115
8.1 Module Loading . 115
8.2 Module file loading . 116
8.3 BAT Extensions . 116
8.4 BAT Buffer Pool . 117
8.5 Constants . 120
8.6 BAT Iterators . 121
8.7 Box definitions . 122
8.8 Client Management . 122
8.9 Factory management . 124
8.10 Inspection . 124
8.11 Input/Output module . 126
8.12 Language Extensions . 128
8.13 MAL debugger interface . 130
8.14 Manual Inspection . 133
8.15 MAPI interface . 134
8.16 Multiple association tables . 137
8.17 BAT Partition Manager . 138

8.17.1 Derived partitioning . 138
8.17.2 Using partitions . 138
8.17.3 Partition updates . 139
8.17.4 Partitioned results . 139
8.17.5 Partition iterators . 140
8.17.6 Partition selection . 140

8.18 Performance profiler . 141
8.18.1 Monet Event Logger . 141
8.18.2 Execution tracing . 141

8.19 PCRE library interface . 143
8.20 Remote querying functionality . 143
8.21 Statistics box. 145
8.22 The table interface . 147

8.22.1 Tablet properties . 149
8.22.2 Scalar tablets . 149

vi

8.22.3 Tablet dump/restore . 149
8.22.4 Front-end extension . 150
8.22.5 The commands . 150
8.22.6 Raw Load . 152

8.23 Transaction management . 152
8.24 The Inner Core . 153
8.25 Short Outline . 154

8.25.1 Rationale . 155
8.26 Interface Files . 157

8.26.1 Database Context . 157
8.26.2 GDK session handling . 157

8.27 Binary Association Tables . 157
8.27.1 GDK variant record type . 158
8.27.2 The BAT record . 158
8.27.3 Heap Management . 159
8.27.4 Internal HEAP Chunk Management . 160
8.27.5 BAT construction . 160
8.27.6 BUN manipulation . 160
8.27.7 BAT properties . 161
8.27.8 BAT manipulation . 162
8.27.9 BAT Input/Output . 163
8.27.10 Heap Storage Modes . 163
8.27.11 Printing . 163
8.27.12 BAT clustering . 163

8.28 BAT Buffer Pool . 164
8.29 GDK Extensibility . 164

8.29.1 Atomic Type Descriptors . 165
8.29.2 Atom Definition . 165
8.29.3 Atom Manipulation . 165
8.29.4 Unique OIDs . 166
8.29.5 Built-in Accelerator Functions . 167
8.29.6 Multilevel Storage Modes . 167

8.30 GDK Utilities . 167
8.30.1 GDK memory management . 167
8.30.2 GDK error handling . 167

8.31 Transaction Management . 168
8.31.1 Delta Management . 169

8.32 BAT Alignment and BAT views . 170
8.33 BAT Iterators . 170

8.33.1 simple sequential scan . 171
8.33.2 batloop where the current element can be deleted/updated

. 171
8.33.3 sequential scan over deleted BUNs . 172
8.33.4 hash-table supported loop over BUNs 172
8.33.5 specialized hashloops . 173
8.33.6 loop over a BAT with ordered tail . 173

8.34 Common BAT Operations . 174
8.34.1 BAT aggregates . 174

vii

8.34.2 Alignment transformations . 174
8.34.3 BAT relational operators . 174

8.35 Aggregates Module . 175
8.36 Timers and Timed Interrupts . 175
8.37 BAT Algebra . 175
8.38 Basic array support . 176
8.39 Binary Association Tables . 176

8.39.1 Wrapping . 176
8.40 InformationFunctions . 176

8.40.1 Property management . 198
8.41 Synced BATs . 201
8.42 Role Management . 201
8.43 Accelerator Control . 206
8.44 BAT calculator . 208
8.45 NULL semantics . 208
8.46 BAT Coercion Routines . 209
8.47 BAT if-then-else multiplex expressions. 209
8.48 Color multiplexes . 209
8.49 String multiplexes . 209
8.50 BAT math calculator . 209
8.51 The math module . 209
8.52 Time/Date multiplexes . 210
8.53 Basic arithmetic . 210
8.54 Performance Counters . 211
8.55 The group module . 211

8.55.1 Algorithms . 212
8.55.2 Cross Table (GRP) . 212

8.56 Lightweight Lock Module . 212
8.57 The Transaction Logger . 213
8.58 Multi-Attribute Equi-Join . 213
8.59 Priority queues . 213
8.60 System state information . 213
8.61 Unix standard library calls . 214

9 Application Programming Interfaces 215
9.1 The Mapi Library . 215

9.1.1 Sample MAPI Application . 215
9.1.2 Command Summary . 217
9.1.3 Library Synopsis . 219
9.1.4 Error Message . 219
9.1.5 Mapi Function Reference . 220
9.1.6 Connecting and Disconnecting . 220
9.1.7 Sending Queries . 220
9.1.8 Getting Results . 221
9.1.9 Errors . 222
9.1.10 Parameters . 223
9.1.11 Miscellaneous . 224

9.2 MonetDB Perl Library . 225

viii

9.2.1 A Simple Perl Example . 225
9.3 MonetDB PHP Library . 227

9.3.1 A Simple PHP Example . 228
9.4 The MonetDB MAPI and SQL client python API 231
9.5 Introduction . 231
9.6 Changes . 231
9.7 Installation . 231
9.8 Documentation . 231
9.9 Examples . 231
9.10 MonetDB JDBC Driver . 233

9.10.1 Getting the driver Jar . 233
9.10.2 Compiling the driver (using ant, optional) 233
9.10.3 Testing the driver using the JdbcClient utility 233
9.10.4 Using the driver in your Java programs 234
9.10.5 A sample Java program . 234

9.11 MonetDB ODBC Driver . 236
Microsoft Excel demo . 237
Installing the MonetDB ODBC Driver for unixODBC 242

Appendix A Instruction Summary 249

Appendix B Instruction Help 256

Chapter 1: General Introduction 1

1 General Introduction

The MonetDB reference manual serves as the primary entry point to locate information on
its functionality, system architecture, services and best practices on using its components.

The manual is produced from a Texinfo framework file, which collects and organizes
bits-and-pieces of information scattered around the many source components comprising
the MonetDB software family. The Texinfo file is turned into a HTML browse-able version
using makeinfo program. The PDF version can be produced using pdflatex. Alternative
formats, e.g., XML and DocBook format, can be readily obtained from the Texinfo file.

The copyright(2008) on the MonetDB software, documentation and logo is owned by
CWI. Other trademarks and copyrights referred to in this manual are the property of their
respective owners.

1.1 Intended Audience

The MonetDB reference manual is aimed at application developers and researchers with an
intermediate level exposure to database technology, its embedding in host environments,
such as C, Perl, Python, PHP, or middleware solutions based on JDBC and ODBC.

The bulk of the MonetDB reference manual deals with the techniques deployed in the
back-end for the expert user and researcher. Judicious use of the programming interfaces
and database kernel modules for domain specific tasks lead to high-performance solutions.
The grand challenge for the MonetDB development team is to assemble a sufficient and
orthogonal set of partial solutions to accommodate a wide variety of front-ends.

Feedback on the functionality provided is highly appreciated, especially when you embark
on a complex programming project. If the envisioned missing functionality is generally
applicable it makes sense to contribute it to the community. Share your comments and
thoughts through the MonetDB mailing list held at SourceForge.

1.2 How to read this manual

The reference manual covers a lot of ground, which at first reading may be slightly con-
fusing. The material is presented in a top-down fashion. Starting at installing the system
components, SQL & XQuery and the application interface layer, it discusses the MAL soft-
ware stack at length. Forward references are included frequently to point into the right
direction for additional information.

If you are interested in technical details of the MonetDB system, you should start reading
Section 1.70 [Design Overview], page 31. Two reading tracks are possible. The Chapter 3
[MAL Reference], page 48 language and subsequent sections describe the abstract machine
and MAL optimizers to improve execution speed. It is relevant for a better understanding
of the query processing behavior and provides an entry point to built new languages on
top of the database kernel. The tutorial on SQL to MAL compilation provides a basis for
developing your own language front-end.

The second track, The Inner Core describes the datastructures and operations exploited
in the abstract machine layer. This part is essential for developers to aid in bug fixing and
to extend the kernel with new functionality. For most readers, however, it can be skipped
without causing problems to develop efficient applications.

mailto:monetdb-users@lists.sourceforge.net

Chapter 1: General Introduction 2

1.3 Features and Limitations

In this section we give a short overview of the key features to (not) consider the MonetDB
product family. In a nutshell, its origin in the area of data-mining and data-warehousing
makes it an ideal choice for high volume, complex query dominant applications. MonetDB
was not designed for high-volume secure OLTP settings initially.

It is important to recognize that the MonetDB language interfaces are primarily aimed
at experienced system programmers and administrators. End-users are advised to use any
of the open-source graphical SQL workbenches to interact with the system.

1.3.1 When to consider MonetDB ?

A high-performance database management system. MonetDB is an easy accessible open-
source DBMS for SQL-[XQuery-]based applications and database research projects. Its
origin goes back over a decade, when we decided that the database hotset - the part used
by the applications - can be largely held in main-memory or where a few columns of a broad
relational table are sufficient to handle a request. Further exploitation of cache-conscious
algorithms proved the validity of these design decisions.

A multi-model system. MonetDB supports multiple query language front-ends. Aside
from its proprietary language, called the MonetDB Assembly Language (MAL), it aims at
ANSI SQL-2003 and W3C XQuery with update facilities. Their underlying logical data
model and computational scheme differs widely. The system is designed to provide a com-
mon ground for both languages and it is prepared to support languages based on yet another
data model or processing paradigm.

A column-store based database kernel. MonetDB is built on the canonical representation
of database containers, called Binary Association Tables (BATs). MonetDB is known as
one of the principal column-stores, as typically, a separate BAT is used for each table
column. The datastructures are geared towards efficient representation when they mimic
an n-ary relational scheme.

This led to an architecture where the traditional page-pool is replaced by one with a
much larger granularity based on BATs. They are sizeable entities -up to hundreds of
megabytes- swapped into memory upon need. The benefit of this approach has been shown
in numerous papers in the scientific literature.

A broad spectrum database system. MonetDB is continuously developed to support
a broad application field. Although originally developed for Analytical CRM products, it
is now being used at the low-end scale as an embedded relational kernel and projects are
underway to tackle the huge database problems encountered in scientific databases, e.g.
astronomy.

An extendable database system. MonetDB has been strongly influenced by the scientific
experiments to understand the interplay between algorithms and hardware features. It has
turned MonetDB into an extensible database system. It proves valuable in those cases
where an application specific and critical component makes all the difference between slow
and fast implementation.

An open-source software system. MonetDB has been developed over many years of
research at CWI, whose charter ensures that results are easily accessible to others. Either
through publications in the scientific domain or publication of the software components
involved. The MonetDB mailing list is the access point to a larger audience for advice.

http://monetdb.cwi.nl/
mailto:monetdb-users@lists.sourceforge.net

Chapter 1: General Introduction 3

A subscription to the mailing list helps the developer team to justify their hours put into
MonetDB’s development and maintenance.

1.3.2 When not to consider MonetDB ?

There are several areas where MonetDB has not yet built a reputation. They are the prime
candidates for experimentation, but also areas where application construction may become
risky. Mature products or commercial support may then provide a short-term solution,
while MonetDB programmers team works on filling the functional gaps. The following
areas should be considered with care:

Persistent object caches. The tendency to develop applications in Java and C based on
a persistent object model, is a no-go area for MonetDB. Much like other database engines,
the overhead of individual record access does not do justice to the data structures and
algorithms in the kernel. They are chosen to optimize bulk processing, which always comes
at a price for individual object access.

Nevertheless, MonetDB has been used from its early days in a commercial application,
where the programmers took care in maintaining the Java object-cache. It is a route with
great benefits, but also one where sufficient manpower should be devoted to perform a good
job.

High-performance financial OLTP. MonetDB was originally not designed for highly con-
current transaction workloads. It was decided to make ACID hooks explicit in the query
plans generated by the front-end compilers. Given the abundance of main memory nowa-
days and the slack CPU cycles to process database requests, it may be profitable to consider
serial execution of all OLTP transactions.

The SQL implementation provides full transaction control and recovery.
Security. MonetDB has not been designed with a strong focus on security. The major

precautions have been taken, but are incomplete when access to the hosting machine is
granted or when direct access is granted to the Monet Assembly Language features. The
system is preferably deployed in a sand-boxed environment where remote access is encap-
sulated in a dedicated application framework.

Scaling over multiple machines. MonetDB does not provide a centralized controlled,
distributed database infrastructure yet. Instead, we move towards an architecture where
multiple autonomous MonetDB instances are joining together to process a large and dis-
tributed workload.

In the multimedia applications we have exploited successfully the inherent data paral-
lelism to speedup processing and reduce the synchronization cost. The underlying platforms
were Linux-based cluster computers with sizeable main memories.

1.3.3 What are key features of MonetDB

The list below provides a glimpse on the technical characteristics and features of the Mon-
etDB software packages.

The software characteristics for the MonetDB packages are:
• The kernel source code is written in ANSI-C and POSIX compliant.
• The application interface libraries source code complies with the latest language ver-

sions.

Chapter 1: General Introduction 4

• The source code is written in a literate programming style, to stimulate proximity of
code and its documentation.

• The source code is compiled and tested on many platforms with different compiler
options to ensure portability.

• The source code is based on the GNU toolkit, e.g. Automake, Autoconf, and Libtool
for portability.

• The source code is heavily tested on a daily basis, and scrutinized using the Valgrind
toolkit.

The heart is the MonetDB server, which comes with the following innovative features.

• A fully decomposed storage scheme using memory mapped files.
• It supports scalable databases, 32- and 64-bit platforms.
• Connectivity is provided through TCP/IP sockets and SSH on many platforms.
• Index selection, creation and maintenance is automatic.
• The relational operators materialize their results and are self-optimizing.
• The operations are cache- and memory-aware with supreme performance.
• The database back-end is multi-threaded and guards a single physical database in-

stance.

1.3.4 Size Limitations for MonetDB

The maximal database size supported by MonetBD depends on the underlying processing
platform, e.g., a 32- or 64-bit processor, and storage device, e.g., the file system and disk
raids.

The number of columns per tables is practically unlimited. The storage space limitation
depends only on the maximal file size. For each column is mapped onto a file, whose limit
is dictated by the operating system and hardware platform.

The number of concurrent user threads is a configuration parameter. Middleware solu-
tions are adviced to serialize access to the database when large number of users are expected
to access the database.

1.4 A Brief History of MonetDB

The Dark Ages [1979-1992] The development of the MonetDB software family goes back as
far as the early eighties when the first relational kernel, called Troll, was delivered to a larger
audience. It was spread over ca 1000 sites world-wide and became part of a software case-
tool until the beginning of the nineties. None of the code of this system has survived, but
several ideas and experiences on how to obtain a fast kernel by simplification and explicit
materialization found their origin during this period.

The second part of the eighties was spent on building the first distributed main-memory
database system in the context of the national project PRISMA. A fully functional system
of 100 processors and a wealthy 1GB of main memory showed the road to develop database
technology from a different perspective.

The Early Days [1993-1995] Immediately after the PRISMA project was termed dead, a
new database kernel based on Binary Association Tables (BATs) was laid out. The original

"http://www.valgrind.org"
http://www.cwi.nl/themes/ins1/publications/docs/KeMaBoNe:EUROPAR:01.pdf

Chapter 1: General Introduction 5

target was to aim for better support of scientific databases with their then archaic file
structures.

The Data Distilleries Era [1996-2003] The datamining projects running as of 1993 called
for better database support. It culminated in the spin-off Data Distilleries, which based
their analytical customer relationship suite on the power provided by the early MonetDB
implementations. In the years following, many technical innovations were paired with strong
industrial maturing of the software base. Data Distilleries became a subsidiary of SPSS in
2003 and its development activity was shifted to Chicago in 2007.

The Open-Source Challenge [2003-2007] Moving MonetDB Version 4 into the open-
source field required a large number of extensions to the code base. It became utmost
important to support a mature implementation of the SQL-99 standard, and the bulk of
application programming interfaces (PHP,JDBC,Perl,ODBC). The result of this activity
was the first official release in 2004 and the release of the XQuery front-end in 2005. The
XQuery code generator used grew out of a student summer project ("milprint summer") and
proved that scalable, high-performance XQuery processing on a relation DBMS is possible.

The Road Ahead [2008- This manual describes the MonetDB Version 5 release, the result
of a multi-year activity to clean up the software stack and to better support both simple
and complex database requests.

The Future New versions in the MonetDB software family are under development. Ex-
tensions and renovation of the kernel are studied in the X100 project. Its Volcano-style
interpreter aims to provide performance in I/O-dominant and streaming settings using vec-
torized processing and Just-In-Time (de)compression.

The scene of distributed database is (again) addressed in the Armada project, but not
using the traditional centralized administration focus. Instead the Armada project seeks the
frontiers of autonomous database systems, which still provide a coherent functional view to
its users. In its approach it challenges many dogmas in distributed database technology, such
as the perspective on global consistency, the role of the client in managing the distributed
world, and the way resources are spread.

The MonetDB software framework provides a rich setting to pursue these alleys of data-
base research. We hope that many may benefit from our investments, both research and
business wise.

1.5 Manual Generation

The MonetDB code base is a large collection of files, scattered over the system modules.
Each source file is written in a literal programming style, which physically binds documen-
tation with the relevant code sections. The utility program Mx processes the files marked
*.mx to extract the code sections for system compilation or to prepare for a pretty printed
listing.

The reference manual is based on Texinfo formatted documentation to simplify gen-
eration for different rendering platforms. The components for the reference manual are
extracted by

Mx -i -B -H1 <filename>.mx

which generates the file <filename>.bdy.texi. These pieces are collected and glued to-
gether in a manual framework, running makeinfo to produce the desired output format. The

Chapter 1: General Introduction 6

Texinfo information is currently limited to the documentation, it could also be extended to
process the code.

A printable version of an *.mx file can be produced using the commands:
Mx <filename>.mx
pdflatex <filename>.tex

1.5.1 Conventions and Notation

The typographical conventions used in this manual are straightforward. Monospaced text
is used to designate names in the code base and examples. Italics is used in explanations
to indicate where a user supplied value should be substituted.

Snippets of code are illustrated in small caps font. The interaction with textual client
interfaces uses the default prompt-setting of the underlying operating system.

Keywords in the MonetDB interface languages are case sensitive; SQL keywords are not
case sensitive. No distinction is made in this manual.

1.5.2 Additional Resources

Although this reference manual aims to be complete for developing applications with Mon-
etDB, it also depends on additional resources for a full understanding.

This reference manual relies on external documentation for the basics of its query lan-
guages SQL, XQuery, its application interfaces, PHP, Perl, Pyhton, and its middleware
support, JDBC and ODBC. Examples are used to illustrate their behaviour in the context
of MonetDB only. The resource locations identified below may at times proof valuable.
Perl DBI http://www.perl.org/
PHP5 http://www.php.net/
Python http://www.python.org/
XQuery http://www.w3c.org/TR/xquery/

The primary source for additional information is the MonetDB website,
http://monetdb.cwi.nl/, and the code base itself. Information on the background of its
architecture can be found in the library of scientific publications.

1.6 Downloads and Installation

For most people a binary distribution package is sufficient. The prime decision is to select
either the SQL or XQuery product line. They currently rely on different and incompatible
back-end servers.

The binary distribution contains all components for MonetDB application development,
i.e. a back-end server, an SQL or XQuery compiler, and the client libraries. These com-
ponents are packaged conveniently for several platforms in the download section at Source-
Forge. It can be installed in a private directory or in the Linux/Windows compliant default
folder location.

The Developers distribution is meant for source experimentation and functional enhance-
ments. A "stable" version is prepared regularly. It means that special care has been taken
to assure that errors reported during the nightly builds have been solved on the platforms
of interest. Major bug fixes are also applied to the latest stable version, while functional
enhancements are kept for the next release or the daily builds.

http://www.perl.org/
http://www.php.net/
http://www.python.org/
http://www.w3c.org/TR/xquery/
http://monetdb.cwi.nl/
http://sourceforge.net/project/showfiles.php?group_id=56967

Chapter 1: General Introduction 7

The Experts distribution is meant for MonetDB kernel software developers only. They
should have a clear understanding of Linux development tools, e.g. automake, config,
CVS, and team-based software development and the interdependencies of the MonetDB
components.

If you encounter errors during the installation, please have a look at the MonetDB
mailing list for common errors and some advice on how to proceed.

1.6.1 Developers Distribution

Developers interested in source code to be linked with the MonetDB libraries or running on
non-supported platforms may use the nightly builds tarballs to assemble a working system.
Alternatively, they can check out the latest stable of current version from cvs.

The easiest way is use the All-In-One scripts provided. A quick installation based on
the nightly tarballs and super source tarball is supported by the monetdb-install.sh script.
Check it out and run it in an empty directory should be sufficient on most Linux platforms
to get going. It takes about 10-20 minutes to install and compile from scratch on a modern
PC. The nightly build source distribution comes with the complete test-bench to assure
that changes do not affect (in as far as they get tested) its stability. A single stable release
is maintained for external users while we concurrently work on the next release. Older
versions are not actively maintained by the development team.

1.6.2 Experts

The experts may want more control than provided by the developer distribution support.
Set up of a fully functional system requires downloading and installation of the latest pack-
ages from SourceForge. The compatibility table below illustrates the packages in the CVS
repository.

MonetDB/SQL MonetDB/XQueryClients JDBC & XR-
PCwrapper

java x
buildtools x x x
clients x x x
MonetDB x x
MonetDB4 x
MonetDB5 x
SQL x
Pathfinder x

Thanks to the GNU autoconf and automake tools, the MonetDB software runs on a
wide variety of hardware/software platforms. The MonetDB development team uses many
of the platforms available to perform automated nightly regression testing. For more details
see The Test Web.

The MonetDB code base -with daily builds available for users preferring living at the
edge- evolves quickly. Application developers, however, may tune into the MonetDB mailing
list to be warned when a major release has become available, or when detected errors require
a patch.

mailto:monetdb-users@lists.sourceforge.net
mailto:monetdb-users@lists.sourceforge.net
http://monetdb.cwi.nl/download.php?target=http://monetdb.cwi.nl/Assets/monetdb-install.sh
http://monetdb.cwi.nl/Development/TestWeb/index.html
mailto:monetdb-users@lists.sourceforge.net
mailto:monetdb-users@lists.sourceforge.net

Chapter 1: General Introduction 8

1.7 How To Start with MonetDB

This document helps you compile and install the MonetDB suite from scratch on Unix-like
systems (this includes of course Linux, but also MacOS X and Cygwin). This document is
meant to be used when you want to compile and install from CVS source. When you use
the prepared tar balls, some of the steps described here should be skipped.

In case you prefer installing a pre-compiled binary distribution, please check out the
binary distribution.

This document assumes that you are planning on compiling and installing MonetDB
on a Unix-like system (e.g., Linux, IRIX, Solaris, AIX, Mac OS X/Darwin, or CYGWIN).
For compilation and installation on a native Windows system (NT, 2000, XP) see the
instructions in the file ../buildtools/doc/windowsbuild.rst.

1.8 The Suite

The MonetDB software suite consists of the following parts which need to be built in the
correct order:

buildtools
Tools used only for building the other parts of the suite. These tools are only
needed when building from CVS. When building from the source distribution
(i.e. the tar balls), you do not need this.

MonetDB Fundamental libraries used in the other parts of the suite.

clients Libraries and programs to communicate with the server(s) that are part of the
suite.

MonetDB4 The MIL-based server. This is required if you want to use XML/XQuery
(pathfinder), and can be used with SQL.

MonetDB5 The MAL-based server. This can be used with and is recommended for SQL.

pathfinder
The XML/XQuery engine built on top of MonetDB4.

sql The SQL server built on top of (targeted on) either MonetDB4 or MonetDB5.

MonetDB4 and MonetDB5 are the basic database engines. One or the other is required,
but you can have both. Pathfinder currently needs MonetDB4, sql can run on both Mon-
etDB4 and MonetDB5 (the latter is recommended).

The order of compilation and installation is important. It is best to use the above order
(where pathfinder and sql can be interchanged) and to configure-make-make install each
package before proceeding with the next.

1.9 Prerequisites

CVS You only need this if you are building from CVS. If you start with the source
distribution from SourceForge you don’t need CVS.
You need to have a working CVS. For instructions, see the SourceForge docu-
mentation and look under the heading CVS Instructions.

http://sourceforge.net/project/showfiles.php?group_id=56967
http://sourceforge.net/project/showfiles.php?group_id=56967
Windows-Installation.html
http://sourceforge.net/project/showfiles.php?group_id=56967
http://sourceforge.net/docman/?group_id=1
http://sourceforge.net/docman/?group_id=1

Chapter 1: General Introduction 9

Python MonetDB uses Python (version 2.0.0 or better) during configuration of the soft-
ware. See http://www.python.org/ for more information. (It must be admitted,
version 2.0.0 is ancient and has not recently been tested, we currently use 2.4
and newer.)

autoconf/automake/libtool
MonetDB uses GNU autoconf (>= 2.57) and automake (>= 1.5) during the
Bootstrap phase, and libtool (>= 1.4) during the Make phase. autoconf and
automake are not needed when you start with the source distribution.

standard software development tools
To compile MonetDB, you also need to have the following standard software
development tools installed and ready for use on you system:

• a C compiler (e.g. GNU’s gcc);

• GNU make (gmake) (native make on, e.g., IRIX and Solaris usually don’t
work).

The following are not needed when you start with the source distribution:

• a C++ compiler (e.g. GNU’s g++);

• a lexical analyzer generator (e.g., lex or flex);

• a parser generator (e.g., yacc or bison).

The following are optional. They are checked for during configuration and if
they are missing, the feature is just missing:

• swig

• perl

• php

buildtools (Mx, mel, autogen, and burg)
These tools are not needed when you start with the source distribution.

Before building any of the other packages from the CVS sources, you first need
to build and install the buildtools. Check out buildtools with

cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb checkout buildtools

and follow the instructions in the README file, then proceed with MonetDB.
For this step only you need the C++ compiler.

libxml2 The XML parsing library libxml2 is only used by XML/XQuery (pathfinder).
The library is used for:

1. the XML Schema import feature of the Pathfinder compiler, and

2. the XML document loader (runtime/shredder.mx).

If libxml2 is not available on your system, the Pathfinder compiler will be
compiled without XML Schema support. The XML document loader will not
be compiled at all in that case. Current Linux distributions all come with
libxml2.

http://www.python.org/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
bootstrap
http://www.gnu.org/software/libtool/
make
http://www.xmlsoft.org

Chapter 1: General Introduction 10

1.10 Space Requirements

The packages take about this much space:
buildtools 1.5 MB 8 MB 2.5 MB
MonetDB 2 MB 21 MB 4 MB
clients 9 MB 25 MB 10 MB
MonetDB4 35.5 MB 50 MB 14 MB
MonetDB5 26 MB 46 MB 12 MB
sql 100 MB 22.5 MB 8 MB
pathfinder 130 MB 43 MB 12 MB

Some of the source packages are so large because they include lots of data for testing
purposes.

1.11 Getting the Software

There are two ways to get the source code:
1. checking it out from the CVS repository on SourceForge;
2. downloading the pre-packaged source distribution from SourceForge.

The following instructions first describe how to check out the source code from the CVS
repository on SourceForge; in case you downloaded the pre-packaged source distribution,
you can skip this section and proceed to Configure and Make.

1.12 CVS checkout

This command should be done once. It records a password on the local machine to be used
for all subsequent CVS accesses with this server.
cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb login

Just type RETURN when asked for the password.
Then get the software by using the command:

cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb checkout \
buildtools MonetDB clients MonetDB4 MonetDB5 pathfinder sql

This will create the named directories in your current working directory. Then first follow
the instructions in buildtools/README before continuing with the others. Naturally, you
don’t need to check out packages you’re not going to use.

Also see the SourceForge documentation for more information about using CVS.

1.13 Bootstrap, Configure and Make

Before executing the following steps, make sure that your shell environment (especially the
variables PATH. LD_LIBRARY_PATH, and PYTHONPATH) is set up so that the tools listed above
can be found. Also, set up PATH to include the prefix/bin directory where prefix is the
prefix is where you want everything to be installed, and set up PYTHONPATH to include
the prefix/lib/python2.X directory where python2.X is the version of Python being used.
It is recommended to use the same prefix for all packages. Only the prefix/lib/python2.X
directory for buildtools is needed in PYTHONPATH.

http://sourceforge.net/project/showfiles.php?group_id=56967
bootstrap-configure-and-make
http://sourceforge.net/cvs/?group_id=56967

Chapter 1: General Introduction 11

In case you checked out the CVS version, you have to run bootstrap first; in case you
downloaded the pre-packaged source distribution, you should skip bootstrap and start with
configure (see Configure).

For each of the packages do all the following steps (bootstrap, configure, make, make
install) before proceeding to the next package.

1.14 Bootstrap

This step is only needed when building from CVS.
In the top-level directory of the package type the command (note that this uses

autogen.py which is part of the buildtools package — make sure it can be found in your
$PATH):
./bootstrap

1.15 Configure

Then in any directory (preferably a new, empty directory and not in the MonetDB top-level
directory) give the command:
.../configure [<options>]

where ... is replaced with the (absolute or relative) path to the MonetDB top-level
directory.

The directory where you execute configure is the place where all intermediate source
and object files are generated during compilation via make.

By default, MonetDB is installed in /usr/local. To choose another target directory,
you need to call
.../configure --prefix=<prefixdir> [<options>]

Some other useful configure options are:

--enable-debug
enable full debugging default=[see Configure defaults and recommendations
below]

--enable-optimize
enable extra optimization default=[see Configure defaults and recommenda-
tions below]

--enable-assert
enable assertions in the code default=[see Configure defaults and recommenda-
tions below]

--enable-strict
enable strict compiler flags default=[see Configure defaults and recommenda-
tions below]

--enable-warning
enable extended compiler warnings default=off

--enable-profile
enable profiling default=off

configure
configure-defaults-and-recommendations
configure-defaults-and-recommendations
configure-defaults-and-recommendations
configure-defaults-and-recommendations
configure-defaults-and-recommendations
configure-defaults-and-recommendations
configure-defaults-and-recommendations

Chapter 1: General Introduction 12

--enable-instrument
enable instrument default=off

--with-mx=<Mx>
which Mx binary to use (default: whichever Mx is found in your PATH)

--with-mel=<mel>
which mel binary to use (default: whichever mel is found in your PATH)

--enable-bits=<#bits>
specify number of bits (32 or 64) default is compiler default

--enable-oid32
use 32-bit OIDs on 64-bit systems default=off

You can also add options such as CC=<compiler> to specify the compiler and compiler
flags to use.

Use configure --help to find out more about configure options.
The --with-mx and --with-mel options are only used when configuring the sources as

retrieved through CVS.

1.16 Configure defaults and recommendations

For convenience of both developers and users as well as to comply even more with open
source standards, we now set/use the following defaults for the configure options
--enable-strict, --enable-assert, --enable-debug, --enable-optimize

When compiling from CVS sources (as mainly done by developers):
strict=yes assert=yes debug=yes optimize=no (*)

When compiling from packaged/distributed sources (i.e., tarballs) (as mainly done by
users):
strict=no assert=no debug=no optimize=no (*)

For building binary distributions (RPMs):
strict=no assert=no debug=no optimize=yes

(*) IMPORTANT NOTE:
Since --enable-optimize=yes is no longer the default for any case except binary pack-

ages, it is strongly recommended to (re)compile everything from scratch, explicitly configured
with
--enable-debug=no --enable-assert=no --enable-optimize=yes

in case you want/need to run any performance experiments with MonetDB!
Please note: --enable-X=yes is equivalent to --enable-X, and --enable-X=no is equiv-

alent to --disable-X.

1.17 Make

In the same directory (where you called configure) give the command
make

to compile the source code. Please note that parallel make runs (e.g. make -j2) are
currently known to be unsuccessful.

Chapter 1: General Introduction 13

1.18 Testing the Build

This step is optional and only relevant for the packages clients, MonetDB4, MonetDB5,
pathfinder, and sql.

If make went successfully, you can try

make check

This will perform a large number of tests, some are unfortunately still expected to fail,
but most should go successfully. At the end of the output there is a reference to an HTML
file which is created by the test process that shows the test results.

1.19 Install

Give the command

make install

By default (if no --prefix option was given to configure above), this will install in
/usr/local. Make sure you have appropriate privileges.

1.20 Testing the Installation

This step is optional and only relevant for the packages clients, MonetDB4, MonetDB5,
pathfinder, and sql.

Make sure that prefix/bin is in your PATH. Then in the package top-level directory issue
the command

Mtest.py -r [--package=<package>]

where package is one of clients, MonetDB4, MonetDB5, sql, or pathfinder (the --
package=<package> option can be omitted when using a CVS checkout; see

Mtest.py --help

for more options).

This should produce much the same output as make check above, but uses the installed
version of MonetDB.

You need write permissions in part of the installation directory for this command: it
will create subdirectories var/dbfarm and Tests.

1.21 Usage

The MonetDB4 and MonetDB5 engines can be used interactively or as a server. The XQuery
and SQL back-ends can only be used as servers.

To run MonetDB4 interactively, just run:

Mserver

To run MonetDB5 interactively, just run:

mserver5

The disadvantage of running the systems interactively is that you don’t get readline
support (if available on your system). A more pleasant environment can be had by using
the system as a server and using mclient to interact with the system. For MonetDB4 use:

Chapter 1: General Introduction 14

Mserver --dbinit ’module(mapi); mil_start();’

When MonetDB5 is started as above, it automatically starts the server in addition to
the interactive "console".

In order to use the XQuery back-end, which is only available with MonetDB4, start the
server as follows:
Mserver --dbinit ’module(pathfinder);’

If you want to have a MIL server in addition to the XQuery server, use:
Mserver --dbinit ’module(pathfinder); mil_start();’

In order to use the SQL back-end with MonetDB4, use:
Mserver --dbinit ’module(sql_server);’

If you want to have a MIL server in addition to the SQL server, use:
Mserver --dbinit ’module(sql_server); mil_start();’

In order to use the SQL back-end with MonetDB5, use:
mserver5 --dbinit ’include sql;’

Once the server is running, you can use mclient to interact with the server. mclient
needs to be told which language you want to use, but it does not need to be told whether
you’re using MonetDB4 or MonetDB5. In another shell window start:
mclient -l<language>

where language is one of mil, mal, sql, or xquery. If no -l option is given, mil is the
default.

With mclient, you get a text-based interface that supports command-line editing and
a command-line history. The latter can even be stored persistently to be re-used after
stopping and restarting mclient; see
mclient --help

for global details and
mclient -l<language> --help

for language-specific details.
At the mclient prompt some extra commands are available. Type a single question

mark to get a list of options. Note that one of the options is to read input from a file using
<. This interferes with XQuery syntax. This is a known bug.

1.22 Troubleshooting

bootstrap fails if any of the requisite programs cannot be found or is an incompatible
version.

bootstrap adds files to the source directory, so it must have write permissions.
During bootstrap, warnings like

Remember to add ‘AC_PROG_LIBTOOL’ to ‘configure.in’.
You should add the contents of ‘/usr/share/aclocal/libtool.m4’ to ‘aclocal.m4’.
configure.in:37: warning: do not use m4_patsubst: use patsubst or m4_bpatsubst
configure.in:104: warning: AC_PROG_LEX invoked multiple times
configure.in:334: warning: do not use m4_regexp: use regexp or m4_bregexp

Chapter 1: General Introduction 15

automake/aclocal 1.6.3 is older than 1.7.
Patching aclocal.m4 for Intel compiler on Linux (icc/ecc).
patching file aclocal.m4
Hunk #1 FAILED at 2542.
1 out of 1 hunk FAILED -- saving rejects to file aclocal.m4.rej
patching file aclocal.m4
Hunk #1 FAILED at 1184.
Hunk #2 FAILED at 2444.
Hunk #3 FAILED at 2464.
3 out of 3 hunks FAILED -- saving rejects to file aclocal.m4.rej

might occur. For some technical reasons, it’s hard to completely avoid them. However,
it is usually safe to ignore them and simply proceed with the usual compilation procedure.
Only in case the subsequent configure or make fails, these warning might have to be taken
more seriously. In any case, you should include the bootstrap output whenever you report
(see Reporting Problems) compilation problems.

configure will fail if certain essential programs cannot be found or certain essential
tasks (such as compiling a C program) cannot be executed. The problem will usually be
clear from the error message.

E.g., if configure cannot find package XYZ, it is either not installed on your machine,
or it is not installed in places that configure searches (i.e., /usr, /usr/local). In the first
case, you need to install package XYZ before you can configure, make, and install Mon-
etDB. In the latter case, you need to tell configure via --with-XYZ=<DIR> where to find
package XYZ on your machine. configure then looks for the header files in <DIR>/include,
and for the libraries in <DIR>/lib.

In case one of bootstrap, configure, or make fails — especially after a cvs update, or
after you changed some code yourself — try the following steps (in this order; if you are
using the pre-packaged source distribution, you can skip steps 2 and 3):

(In case you experience problems after a cvs update, first make sure that you used cvs
update -dP (or have a line update -dP in your ~/.cvsrc); -d ensures that cvs checks out
directories that have been added since your last cvs update; -P removes directories that
have become empty, because all their file have been removed from the cvs repository. In
case you did not use cvs update -dP, re-run cvs update -dP, and remember to always use
cvs update -dP from now on (or simply add a line update -dP to your ~/.cvsrc)!)
1. In case only make fails, you can try running:

make clean

in your build directory and proceed with step 5; however, if make then still fails, you
have to re-start with step 1.

2. Clean up your whole build directory (i.e., the one where you ran configure and make)
by going there and running:
make maintainer-clean

In case your build directory is different from your source directory, you are advised to
remove the whole build directory.

3. Go to the top-level source directory and run:
./de-bootstrap

reporting-problems

Chapter 1: General Introduction 16

and type y when asked whether to remove the listed files. This will remove all the files
that were created during bootstrap. Only do this with sources obtained through CVS.

4. In the top-level source directory, re-run:

./bootstrap

Only do this with sources obtained through CVS.

5. In the build-directory, re-run:

configure

as described above.

6. In the build-directory, re-run:

make
make install

as described above.

If this still does not help, please contact us.

1.23 Reporting Problems

Bugs and other problems with compiling or running MonetDB should be reported using
the bug tracking system at SourceForge (preferred) or emailed to monet@cwi.nl; see also
http://monetdb.cwi.nl/Development/Bugtracker/index.html. Please make sure that you
give a detailed description of your problem!

1.24 Building MonetDB On Windows

In this document we describe how to build the MonetDB suite of programs on Windows
using the sources from our source repository at SourceForge. This document is mainly
targeted at building on Windows XP on a 32-bit architecture, but there are notes throughout
about building on Windows XP x64 which is indicated with Windows64.

1.25 Introduction

The MonetDB suite of programs consists of a number of components which we will describe
briefly here. The general rule is that the components should be compiled and installed in
the order given here, although some components can be compiled and installed in a different
order. Unless you know the inter-component dependencies, it is better to stick to this order.
Also note that before the next component is built, the previous ones need to be installed.
The section names are the names of the CVS modules on SourceForge.

1.26 buildtools

The buildtools component is required in order to build the sources from the CVS repository.
If you get the pre-packaged sources (i.e. the one in tar balls), you don’t need the buildtools
component (although this has not been tested on Windows).

https://sourceforge.net/tracker/?group_id=56967&atid=482468
mailto:monet%40cwi.nl
http://monetdb.cwi.nl/Development/Bugtracker/index.html
http://sourceforge.net/projects/monetdb/

Chapter 1: General Introduction 17

1.27 MonetDB

Also known as the MonetDB Common component contains the database kernel, i.e. the
heart of MonetDB, and some generally useful libraries. This component is required.

1.28 clients

Also known as the MonetDB Client component contains a library which forms the basis for
communicating with the MonetDB server components, and some interface programs that
use this library to communicate with the server. This component is required.

1.29 MonetDB4

The deprecated (but still used) database server MonetDB4 Server. This component is still
required for the MonetDB XQuery (pathfinder) component. This is the old server which
uses MIL (the MonetDB Interface Language) as programming interface. This component
is only required if you need MIL or if you need the MonetDB XQuery component.

1.30 MonetDB5

The MonetDB5 Server component is the new database server. It uses MAL (the MonetDB
Algebra Language) as programming interface. This component is required if you need MAL
or if you need the MonetDB SQL component.

1.31 sql

Also known as MonetDB SQL, this component provides an SQL frontend to MonetDB5.
This component is required if you need SQL support.

1.32 pathfinder

Also known as MonetDB XQuery, this component provides an XQuery query engine on top
of a relational database. You can store XML documents in the database and query these
documents using XQuery. This component is required if you need XML/XQuery support.

1.33 java

Also known as MonetDB Java, this component provides both the MonetDB JDBC driver
and the XRPC wrapper. This component is optional.

1.34 geom

The geom component provides a module for the MonetDB SQL frontend. This component
is optional.

1.35 testing

The testing component contains some files and programs we use for testing the MonetDB
suite. This component is optional.

Chapter 1: General Introduction 18

1.36 Prerequisites

In order to compile the MonetDB suite of programs, several other programs and libraries
need to be installed. Some further programs and libraries can be optionally installed to
enable optional features. The required programs and libraries are listed in this section, the
following section lists the optional programs and libraries.

1.37 CVS (Concurrent Version System)

All sources of the MonetDB suite of programs are stored using CVS at SourceForge. You
will need CVS to get the sources. We use CVS under Cygwin, but any other version will
do as well.

1.38 Compiler

The suite can be compiled using one of the following compilers:
• Microsoft Visual Studio .NET 2003 (also known as Microsoft Visual Studio 7);
• Microsoft Visual Studio 2005 (also known as Microsoft Visual Studio 8);
• Intel(R) C++ Compiler 9.1 (which actually needs one of the above);
• Intel(R) C++ Compiler 10.1 (which also needs one of the Microsoft compilers).

Note that the pathfinder component can currently not be compiled with any of the
Microsoft compilers. It can be compiled with the Intel compiler.

Not supported anymore (but probably still possible) are the GNU C Compiler gcc under
Cygwin. Using that, it (probably still) is possible to build a version that runs using the
Cygwin DLLs, but also a version that uses the MinGW (Minimalist GNU for Windows)
package. This is not supported and not further described here.

1.39 Python

Python is needed for creating the configuration files that the compiler uses to determine
which files to compile. Python can be downloaded from http://www.python.org/. Just
download and install the Windows binary distribution.

On Windows64 you can use either the 32-bit or 64-bit version of Python.

1.40 Bison

Bison is a reimplementation of YACC (Yet Another Compiler Compiler), a program to
convert a grammar into working code.

A version of Bison for Windows can be gotten from the GnuWin32 project at
http://gnuwin32.sourceforge.net/. Click on the Packages link on the left and then on
Bison, and get the Setup file and install it.

1.41 Flex

Flex is a fast lexical analyzer generator.
A version of Flex for Windows can be gotten from the GnuWin32 project at

http://gnuwin32.sourceforge.net/. Click on the Packages link on the left and then on Flex,
and get the Setup file and install it.

http://www.cvshome.org/
http://sourceforge.net/projects/monetdb/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.mingw.org/
http://www.python.org/
http://www.python.org/
http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/

Chapter 1: General Introduction 19

1.42 Pthreads

Get a Windows port of pthreads from ftp://sources.redhat.com/pub/pthreads-win32/. You
can download the latest pthreads-*-release.exe which is a self-extracting archive. Extract
it, and move or copy the contents of the Pre-built.2 folder to C:\Pthreads (so that you end
up with folders C:\Pthreads\lib and C:\Pthreads\include).

On Windows64, in a command interpreter, run nmake clean VC in the extracted
pthreads.2 folder with the Visual Studio environment set to the appropriate values, e.g.
by executing the command Open Visual Studio 2005 x64 Win64 Command Prompt. Then
copy the files pthreadVC2.dll and pthreadVC2.lib to C:\Pthreads\lib.

1.43 Diff

Diff is a program to compare two versions of a file and list the differences. This program
is not used during the build process, but only during testing. As such it is not a strict
prerequisite.

A version of Diff for Windows can be gotten from the GnuWin32 project at
http://gnuwin32.sourceforge.net/. Click on the Packages link on the left and then on
DiffUtils (note the name), and get the Setup file and install it.

1.44 Patch

Patch is a program to apply the output of diff to the original. This program is not used
during the build process, but only for testing, and then only to approve results that were
different from what was expected. As such it is not a strict prerequisite.

A version of Patch for Windows can be gotten from the GnuWin32 project at
http://gnuwin32.sourceforge.net/. Click on the Packages link on the left and then on
Patch, and get the Setup file and install it.

1.45 PsKill

PsKill is a program to kill (terminate) processes. This program is only used during testing
to terminate tests that take too long.

PsKill is part of the Windows Sysinternals. Go to the Process Utilities, and get the
PsKill package. PsKill is also part of the PsTools package and the Sysinternals Suite, so
you can get those instead. Extract the archive, and make sure that the folder is in your
Path variable when you run the tests.

1.46 PCRE (Perl Compatible Regular Expressions)

The PCRE library is used to extend the string matching capabilities of MonetDB. The
PCRE library is required for the MonetDB5 component.

Download the source from http://www.pcre.org/. In order to build the library, you will
need a program called cmake which you can download from http://www.cmake.org/. Follow
the Download link and get the Win32 Installer, install it, and run it. It will come up with
a window where you have to fill in the location of the source code and where to build the
binaries. Fill in where you extracted the PCRE sources, and some other directory (I used a
build directory which I created within the PCRE source tree). You need to configure some

ftp://sources.redhat.com/pub/pthreads-win32/
http://gnuwin32.sourceforge.net/
diff
http://gnuwin32.sourceforge.net/
http://www.microsoft.com/technet/sysinternals/default.mspx
http://www.pcre.org/
http://www.pcre.org/
http://www.cmake.org/

Chapter 1: General Introduction 20

PCRE build options. I chose to do build shared libs, to match newlines with the ANYCRLF
option, and to do have UTF-8 support and support for Unicode properties. When you’re
satisfied with the options, click on Configure, and then on Generate. Then in the build
directory you’ve chosen, open the PCRE.sln file with Visual Studio, and build and install.
Make sure you set the Solution Configuration to Release if you want to build a releasable
version of the MonetDB suite. The library will be installed in C:\Program Files\PCRE.

For Windows64, select the correct compiler (Visual Studio 9 2008 Win64) and pro-
ceed normally. When building the 32 bit version on Windows64, choose C:/Program
Files (x86)/PCRE for the CMAKE_INSTALL_PREFIX value, otherwise choose C:/Program
Files/PCRE.

1.47 OpenSSL

The OpenSSL library is used during authentication of a MonetDB client program with the
MonetDB server. The OpenSSL library is required for the MonetDB5 component, and
hence implicitly required for the clients component when it needs to talk to a MonetDB5
server.

Download the source from http://www.openssl.org/. We used the latest stable version
(0.9.8k). Follow the instructions in the file INSTALL.W32 or INSTALL.W64.

Fix the OPENSSL definitions in MonetDB\NT\winrules.msc so that they refer to the
location where you installed the library and call nmake with the extra parameter HAVE_
OPENSSL=1.

1.48 libxml2

Libxml2 is the XML C parser and toolkit of Gnome.

This library is only a prerequisite for the pathfinder component, although the MonetDB5
component can also make use of it.

The home of the library is http://xmlsoft.org/. But Windows binaries can be gotten
from http://www.zlatkovic.com/libxml.en.html. Click on Win32 Binaries on the right, and
download libxml2, iconv, and zlib. Install these in e.g. C:\.

Note that we hit a bug in version 2.6.31 of libxml2. See the bugreport. Use version
2.6.30 or 2.6.32.

On Windows64 you will have to compile libxml2 yourself (with its optional prerequisites
iconv and zlib, for which see below).

Edit the file win32\Makefile.msvc and change the one occurrence of zdll.lib to
zlib1.lib, and then run the following commands in the win32 subdirectory, substitut-
ing the correct locations for the iconv and zlib libraries:

cscript configure.js compiler=msvc prefix=C:\libxml2-2.6.30.win64 ^
include=C:\iconv-1.11.win64\include;C:\zlib-1.2.3.win64\include ^
lib=C:\iconv-1.11.win64\lib;C:\zlib-1.2.3.win64\lib iconv=yes zlib=yes
nmake /f Makefile.msvc
nmake /f Makefile.msvc install

After this, you may want to move the file libxml2.dll from the lib directory to the
bin directory.

http://www.openssl.org/
http://www.openssl.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://www.zlatkovic.com/libxml.en.html
https://sourceforge.net/tracker/index.php?func=detail&aid=1899258&group_id=56967&atid=482468
iconv
zlib

Chapter 1: General Introduction 21

1.49 geos (Geometry Engine Open Souce)

Geos is a library that provides geometric functions. This library is only a prerequisite for
the geom component.

There are no Windows binaries available (not that I looked very hard), so to get the
software, you will have to get the source and build it yourself.

Get the source tar ball from http://trac.osgeo.org/geos/#Download and extract some-
where. All the versions I have tried (up to 3.1.1) miss one essential file to build on Win-
dows, so in addition get the file nmake.opt from http://svn.osgeo.org/geos/branches/3.1/
and copy it to the top of the extracted source directory. Then build using:

nmake /f makefile.vc

Then install the library somewhere, e.g. in C:\geos-3.1.win32:

mkdir C:\geos-3.1.win32
mkdir C:\geos-3.1.win32\lib
mkdir C:\geos-3.1.win32\bin
mkdir C:\geos-3.1.win32\include
mkdir C:\geos-3.1.win32\include\geos
copy source\geos_c_i.lib C:\geos-3.1.win32\lib
copy source\geos_c.dll C:\geos-3.1.win32\bin
copy source\headers C:\geos-3.1.win32\include
copy source\headers\geos C:\geos-3.1.win32\include\geos
copy capi\geos_c.h C:\geos-3.1.win32\include

1.50 Optional Packages

1.51 iconv

Iconv is a program and library to convert between different character encodings. We only
use the library.

The home of the program and library is http://www.gnu.org/software/libiconv/,
but Windows binaries can be gotten from the same site as the libxml2 library:
http://www.zlatkovic.com/libxml.en.html. Click on Win32 Binaries on the right, and
download iconv. Install in e.g. C:\. Note that these binaries are quite old (libiconv-1.9.2,
last I looked).

On Windows64 you will have to compile iconv yourself. Get the source from the iconv
website and extract somewhere. Note that with the 1.12 release, the libiconv developers
removed support for building with Visual Studio but require MinGW instead, which means
that there is no support for Windows64. In other words, get the latest 1.11 release.

Build using the commands:

nmake -f Makefile.msvc NO_NLS=1 DLL=1 MFLAGS=-MD PREFIX=C:\iconv-1.11.win64
nmake -f Makefile.msvc NO_NLS=1 DLL=1 MFLAGS=-MD PREFIX=C:\iconv-1.11.win64 install

Fix the ICONV definitions in MonetDB\NT\winrules.msc so that they refer to the location
where you installed the library and call nmake with the extra parameter HAVE_ICONV=1.

http://geos.refractions.net/
http://trac.osgeo.org/geos/#Download
http://svn.osgeo.org/geos/branches/3.1/
http://www.gnu.org/software/libiconv/
http://www.gnu.org/software/libiconv/
http://www.zlatkovic.com/libxml.en.html
http://www.gnu.org/software/libiconv/#downloading
http://www.gnu.org/software/libiconv/#downloading

Chapter 1: General Introduction 22

1.52 zlib

Zlib is a compression library which is optionally used by both MonetDB and the iconv
library. The home of zlib is http://www.zlib.net/, but Windows binaries can be gotten
from the same site as the libxml2 library: http://www.zlatkovic.com/libxml.en.html. Click
on Win32 Binaries on the right, and download zlib. Install in e.g. C:\.

On Windows64 you will have to compile zlib yourself. Get the source from
the zlib website and extract somewhere. Open the Visual Studio 6 project file
projects\visualc6\zlib.dsw and click on Yes To All to convert to the version of
Visual Studio which you are using. Then add a x64 Solution Platform by selecting
Build -> Confguration Manager..., in the new window, in the pull down menu under
Active solution platform: select <New...>. In the pop up window select x64 for
the new platform, copying the settings from Win32 and click on OK. Set the Active
solution configuration to DLL Release and click on Close. Then build by selecting
Build -> Build Solution. Create the directory where you want to install the binaries,
e.g. C:\zlib-1.2.3.win64, and the subdirectories bin, include, and lib. Copy
the files zconf.h and zlib.h to the newly created include directory. Copy the file
projects\visualc6\win32_dll_release\zlib1.lib to the new lib directory, and copy
the file projects\visualc6\win32_dll_release\zlib1.dll to the new bin directory.

1.53 Perl

Perl is only needed to create an interface that can be used from a Perl program to commu-
nicate with a MonetDB server.

We have used ActiveState’s ActivePerl distribution (release 5.10.0.1003). Just install
the 32 or 64 bit version and compile the clients component with the additional nmake flags
HAVE_PERL=1 HAVE_PERL_DEVEL=1 HAVE_PERL_SWIG=1 (the latter flag only if SWIG is also
installed).

1.54 PHP

PHP is only needed to create an interface that can be used from a PHP program to com-
municate with a MonetDB server.

Download the Windows installer and source package of PHP 5 from
http://www.php.net/. Install the binary package and extract the sources some-
where (e.g. as a subdirectory of the binary installation).

In order to get MonetDB to compile with these sources a few changes had to be made
to the sources:

• In the file Zend\zend.h, move the line

#include <stdio.h>

down until just after the block where zend_config.h is included.

• In the file main\php_network.h, delete the line

#include "arpa/inet.h"

We have no support yet for Windows64.

http://www.zlib.net/
http://www.zlib.net/
http://www.zlatkovic.com/libxml.en.html
http://www.zlib.net/
http://www.perl.org/
http://www.activestate.com/
http://www.activestate.com/Products/activeperl/
swig
http://www.php.net/
http://www.php.net/

Chapter 1: General Introduction 23

1.55 SWIG (Simplified Wrapper and Interface Generator)

We use SWIG to build interface files for Perl and Python. You can download SWIG
from http://www.swig.org/download.html. Get the latest swigwin ZIP file and extract it
somewhere. It contains the swig.exe binary.

1.56 Java

If you want to build the java component of the MonetDB suite, you need Java. Get Java
from http://java.sun.com/, but make sure you do not get the latest version. Get the Java
Development Kit 1.5. Our current JDBC driver is not compatible with Java 1.6 yet, and
the XRPC wrapper is not compatible with Java 1.4 or older.

In addition to the Java Development Kit, you will also need Apache Ant which is re-
sponsible for the actual building of the driver.

1.57 Apache Ant

Apache Ant is a program to build other programs. This program is only used by the java
component of the MonetDB suite.

Get the Binary Distribution from http://ant.apache.org/, and extract the file somewhere.

1.58 Build Environment

1.59 Placement of Sources

For convenience place the various MonetDB packages in sibling subfolders. You will need
at least:

• buildtools

• MonetDB

• clients

• one or both of MonetDB4, MonetDB5

Optionally:

• sql (requires MonetDB5)

• pathfinder (requires MonetDB4)

Apart from buildtools, all packages contain a subfolder NT which contains a few Windows-
specific source files, and which is the directory in which the Windows version is built. (On
Unix/Linux we recommend to build in a new directory which is not part of the source tree,
but on Windows we haven’t made this separation.)

1.60 Build Process

We use a command window cmd.exe (also known as %ComSpec%) to execute the programs
to build the MonetDB suite. We do not use the point-and-click interface that Visual Studio
offers. In fact, we do not have project files that would support building using the Visual
Studio point-and-click interface.

http://www.swig.org/
http://www.swig.org/download.html
http://java.sun.com/
http://java.sun.com/
http://ant.apache.org/
http://ant.apache.org/

Chapter 1: General Introduction 24

We use a number of environment variables to tell the build process where other parts of
the suite can be found, and to tell the build process where to install the finished bits.

In addition, you may need to edit some of the NT\rules.msc files (each component has
one), or the file NT\winrules.msc in the MonetDB component which is included by all
NT\rules.msc files.

1.61 Environment Variables

1.62 Compiler

Make sure that the environment variables that your chosen compiler needs are set. A
convenient way of doing that is to use the batch files that are provided by the compilers:
• Microsoft Visual Studio .NET 2003 (also known as Microsoft Visual Studio 7):

call "%ProgramFiles%\Microsoft Visual Studio .NET 2003\Common7\Tools\vsvars32.bat"

• Microsoft Visual Studio 2005 (also known as Microsoft Visual Studio 8):
call "%ProgramFiles%\Microsoft Visual Studio 8\Common7\Tools\vsvars32.bat"

• Intel(R) C++ Compiler 10.1.013:
call "C:%ProgramFiles%\Intel\Compiler\C++\10.1.013\IA32\Bin\iclvars.bat"

When using the Intel compiler, you also need to set the CC and CXX variables:
set CC=icl -Qstd=c99 -GR- -Qsafeseh-
set CXX=icl -Qstd=c99 -GR- -Qsafeseh-

(These are the values for the 10.1 version, for 9.1 replace -Qstd=c99 with -Qc99.)

1.63 Internal Variables

• MONETDB_SOURCE - source folder of the MonetDB component
• CLIENTS_SOURCE - source folder of the clients component
• MONETDB4_SOURCE - source folder of the MonetDB4 component
• MONETDB5_SOURCE - source folder of the MonetDB5 component
• SQL_SOURCE - source folder of the sql component
• PATHFINDER_SOURCE - source folder of the pathfinder component
• MONETDB_BUILD - build folder of the MonetDB component (i.e. %MONETDB_SOURCE%\NT)
• CLIENTS_BUILD - build folder of the clients component (i.e. %CLIENTS_SOURCE%\NT)
• MONETDB4_BUILD - build folder of the MonetDB4 component (i.e. %MONETDB4_

SOURCE%\NT)
• MONETDB5_BUILD - build folder of the MonetDB5 component (i.e. %MONETDB5_

SOURCE%\NT)
• SQL_BUILD - build folder of the sql component (i.e. %SQL_SOURCE%\NT)
• PATHFINDER_BUILD - build folder of the pathfinder component (i.e. %PATHFINDER_

SOURCE%\NT)
• MONETDB_PREFIX - installation folder of the MonetDB component
• CLIENTS_PREFIX - installation folder of the clients component

Chapter 1: General Introduction 25

• MONETDB4_PREFIX - installation folder of the MonetDB4 component
• MONETDB5_PREFIX - installation folder of the MonetDB5 component
• SQL_PREFIX - installation folder of the sql component
• PATHFINDER_PREFIX - installation folder of the pathfinder component

We recommend that the various PREFIX environment variables all point to the same
location (all contain the same value) which is different from the source and build folders.

1.64 PATH and PYTHONPATH

Extend your Path variable to contain the various folders where you have installed the
prerequisite and optional programs. The Path variable is a semicolon-separated list of
folders which are searched in succession for commands that you are trying to execute (note,
this is an example: version numbers may differ):
rem Python is required
set Path=C:\Python25;C:\Python25\Scripts;%Path%
rem Bison and Flex (and Diff)
set Path=%ProgramFiles%\GnuWin32\bin;%Path%
rem for testing: pskill
set Path=%ProgramFiles%\PsTools;%Path%
rem Java is optional, set JAVA_HOME for convenience
set JAVA_HOME=%ProgramFiles%\Java\jdk1.5.0_13
set Path=%JAVA_HOME%\bin;%ProgramFiles%\Java\jre1.5.0_13\bin;%Path%
rem Apache Ant is optional, but required for Java compilation
set Path=%ProgramFiles%\apache-ant-1.7.0\bin;%Path%
rem SWIG is optional
set Path=%ProgramFiles%\swigwin-1.3.31;%Path%

In addition, during the build process we need to execute some programs that were built
and installed earlier in the process, so we need to add those to the Path as well. In addition,
we use Python to execute some Python programs which use Python modules that were also
installed earlier in the process, so we need to add those to the PYTHONPATH variable:
set Path=%BUILDTOOLS_PREFIX%\bin;%Path%
set Path=%BUILDTOOLS_PREFIX%\Scripts;%Path%
set PYTHONPATH=%BUILDTOOLS_PREFIX%\Lib\site-packages;%PYTHONPATH%

Here the variable BUILDTOOLS_PREFIX represents the location where the buildtools com-
ponent is installed. This variable is not used internally, but only used here as a shorthand.

For testing purposes it may be handy to add some more folders to the Path. To begin
with, all DLLs that are used also need to be found in the Path, various programs are used
during testing, such as diff (from GnuWin32) and php, and Python modules that were
installed need to be found by the Python interpreter:
rem Pthreads DLL
set Path=C:\Pthreads\lib;%Path%
rem PCRE DLL
set Path=C:\Program Files\PCRE\bin;%Path%
rem PHP binary
set Path=C:\Program Files\PHP;%Path%

Chapter 1: General Introduction 26

if not "%MONETDB_PREFIX%" == "%SQL_PREFIX%" set Path=%SQL_PREFIX%\bin;%SQL_PREFIX%\lib;%SQL_PREFIX%\lib\MonetDB4;%Path%
set Path=%MONETDB4_PREFIX%\lib\MonetDB4;%Path%
if not "%MONETDB_PREFIX%" == "%MONETDB4_PREFIX%" set Path=%MONETDB4_PREFIX%\bin;%MONETDB4_PREFIX%\lib;%Path%
if not "%MONETDB_PREFIX%" == "%CLIENTS_PREFIX%" set Path=%CLIENTS_PREFIX%\bin;%CLIENTS_PREFIX%\lib;%Path%
set Path=%MONETDB_PREFIX%\bin;%MONETDB_PREFIX%\lib;%Path%

set PYTHONPATH=%CLIENTS_PREFIX%\share\MonetDB\python;%PYTHONPATH%
set PYTHONPATH=%MONETDB_PREFIX%\share\MonetDB\python;%PYTHONPATH%
set PYTHONPATH=%SQL_PREFIX%\share\MonetDB\python;%PYTHONPATH%

1.65 Compilation

1.66 Building and Installing Buildtools

The buildtools component needs to be built and installed first:

cd ...\buildtools
nmake /nologo /f Makefile.msc "prefix=%BUILDTOOLS_PREFIX%" install

where, again, the BUILDTOOLS_PREFIX variable represents the location where the build-
tools component is to be installed.

1.67 Building and Installing the Other Components

The other components of the MonetDB suite are all built and installed in the same way. Do
note the order in which the components need to be built and installed: MonetDB, clients,
MonetDB4/MonetDB5, sql/pathfinder. There is no dependency between MonetDB4 and
MonetDB5. MonetDB4 is a prerequisite for pathfinder, and pathfinder can use MonetDB5
(there is some very preliminary support). Sql requires MonetDB5.

For each of the components, do the following:

cd ...\<component>\NT
nmake /nologo NEED_MX=1 ... "prefix=%..._PREFIX%"
nmake /nologo NEED_MX=1 ... "prefix=%..._PREFIX%" install

Here the first ... needs to be replaced by a list of parameters that tells the system which
of the optional programs and libraries are available. The following parameters are possible:

• DEBUG=1 - compile with extra debugging information
• NDEBUG=1 - compile without extra debugging information (this is used for creating a

binary release);
• HAVE_ICONV=1 - the iconv library is available;
• HAVE_JAVA=1 - Java and Apache Ant are both available;
• HAVE_LIBXML2=1 - the libxml2 library is available;
• HAVE_MONETDB4=1 - for sql and pathfinder: MonetDB4 was compiled and installed;
• HAVE_MONETDB5=1 - for sql and pathfinder: MonetDB5 was compiled and installed;
• HAVE_MONETDB5_XML=1 - for sql and pathfinder: MonetDB5 was compiled with the

xml2 library available (HAVE LIBXML2=1), and hence provides XML support (i.e.,
module xml);

Chapter 1: General Introduction 27

• HAVE_MONETDB5_RDF=1 - for sql and pathfinder: MonetDB5 was compiled with the
raptor library available (HAVE RAPTOR=1), and hence provides RDF support (i.e.,
module rdf);

• HAVE_RAPTOR=1 - the raptor library is available;
• HAVE_NETCDF=1 - the netcdf library is available;
• HAVE_OPENSSL=1 - the OpenSSL library is available;
• HAVE_PERL=1 - Perl is available;
• HAVE_PERL_DEVEL=1 - Perl development is possible (include files and libraries are

available–also need HAVE_PERL=1);
• HAVE_PERL_SWIG=1 - Perl development is possible and SWIG is available (also need

HAVE_PERL=1);
• HAVE_PHP=1 - PHP is available;
• HAVE_PROBXML=1 - compile in support for probabilistic XML (an experimental extension

to the pathfinder component);
• HAVE_PYTHON=1 - Python is available.

In addition, you can add a parameter which points to a file with extra definitions for
nmake. This is very convenient to define where all packages were installed that the build
process depends on since you then don’t have to edit any of the rules.msc files in the
source tree:

• "MAKE_INCLUDEFILE=..." - file with extra nmake definitions.

It is recommended to at least put the MAKE_INCLUDEFILE parameter with argument in
double quotes to protect any spaces that may appear in the file name.

The contents of the file referred to with the MAKE_INCLUDEFILE parameter may contain
something like:

bits=32
PTHREAD_INCS=-IC:\Pthreads\include
PTHREAD_LIBS=C:\Pthreads\lib\pthreadVC2.lib
PHP_SRCDIR=C:\Program Files\PHP\php-5.2.6
PHP_INSTDIR=C:\Program Files\PHP
LIBPERL=C:\Perl
LIBPCRE=C:\Program Files\PCRE
LIBICONV=C:\iconv-1.11.win32
LIBZLIB=C:\zlib-1.2.3.win32
LIBXML2=C:\libxml2-2.6.32+.win32

1.68 Building Installers

Installers can be built either using the full-blown Visual Studio user interface or on
the command line. To use the user interface, open one or more of the files MonetDB4-
XQuery-Installer.sln, MonetDB5-SQL-Installer.sln, MonetDB-ODBC-Driver.sln,
and MonetDB5-Geom-Module.sln in the installation folder and select Build -> Build
Solution. To use the command line, execute one or more of the commands in the
installation folder:

Chapter 1: General Introduction 28

devenv MonetDB4-XQuery-Installer.sln /build
devenv MonetDB5-SQL-Installer.sln /build
devenv MonetDB-ODBC-Driver.sln /build
devenv MonetDB5-Geom-Module.sln /build

In both cases, use the solutions (.sln files) that are appropriate.

There is an annoying bug in Visual Studio on Windows64 that affects the MonetDB5-
Geom-Module installer. The installer contains code to check the registry to find out where
MonetDB5/SQL is installed. The bug is that the 64 bit installer will check the 32-bit
section of the registry. The code can be fixed by editing the generated installer (.msi file)
using e.g. the program orca from Microsoft. Open the installer in orca and locate the
table RegLocator. In the Type column, change the value from 2 to 18 and save the file.
Alternatively, use the following Python script to fix the .msi file:

Fix a .msi (Windows Installer) file for a 64-bit registry search.
Microsoft refuses to fix a bug in Visual Studio so that for a 64-bit
build, the registry search will look in the 32-bit part of the
registry instead of the 64-bit part of the registry. This script
fixes the .msi to look in the correct part.

import msilib
import sys
import glob

def fixmsi(f):
db = msilib.OpenDatabase(f, msilib.MSIDBOPEN_DIRECT)
v = db.OpenView(’UPDATE RegLocator SET Type = 18 WHERE Type = 2’)
v.Execute(None)
v.Close()
db.Commit()

if __name__ == ’__main__’:
for f in sys.argv[1:]:

for g in glob.glob(f):
fixmsi(g)

1.68.1 Daily Builds

Next to functionality and performance, stability and portability are first class goals of
the MonetDB project. Pursuing these goals requires to constantly monitor the evolving
MonetDB code base. For this purpose, we developed a test environment that automatically
compiles and tests MonetDB (and its most prominent add-on packages) every night on a
variety of system configurations.

Software patches and functional enhancements are checked into the repositories on a
daily basis. A limited set of distribution packages is prepared to disseminate the latest to
developers and application programmers as quickly as possible. Such builds may, however,
contain bugs or sometimes even break old functionality.

Chapter 1: General Introduction 29

The TestWeb provides access to the test web-site that summarizes the results of the
Automated Testing activities on various platforms. It is a good starting point before picking
up a daily build version.

Up to three versions of MonetDB are tested daily on all available platforms:
• the cutting edge development version ("Current"), i.e. the head of the main CVS

branch;
• the canditate for the next (feature) release ("Candidate"), i.e. the head of the latest

release candidate branch; and
• the latest release version ("Stable"), i.e. the head of the most recent release branch.

The test reports consist of three overview pages ("cross-check-lists") revealing the results
of
1. all compilation steps (bootstrap, configure, make, make install),
2. testing via "make check" (using debugmask 10, i.e., exhaustive monitoring and correc-

tion of physical BAT properties is enabled in the server), and
3. testing via "Mtest.py -d0 -r" (using debugmask 0, i.e., all debugging is switched off in

the server).

1.68.1.1 Stability

With a (code-wise) complex system like MonetDB, modifying the source code — be it for
fixing bugs or for adding new features — always bears the risk of breaking or at least
altering some existing functionality. To facilitate the task of detecting such changes, small
test scripts together with their respective correct/expected ("stable") output are collected
within the CVS repository of MonetDB. Given the complexity of MonetDB, there is no
way to do anything close to "exhaustive" testing, hence, the idea is to continuously extend
the test collection. E.g., each developer should add some tests as soon as she/he adds
new functionality. Likewise, a test script should be added for each bug report to monitor
whether/when the bug is fixed, and to prevent (or at least detect) future occurrences of
the same bug. The collection consists for hundreds of test scripts, each covering many
micro-functionality tests.

To run all the tests and compare their current output to their stable output, a tool
called Mtest is included in the MonetDB code base. Mtest recursively walks through the
source tree, runs tests, and checks for difference between the stable and the current output.
As a result, Mtest creates the web interface that allows convenient access to the differences
encountered during testing. Each developer is supposed to run "Mtest" (respectively "make
check") on his/her favorite development platform and check the results before checking in
her/his changes. During the automatic daily tests, "make check" and "Mtest" are run on all
testing platforms and the TestWeb is generated to provide convenient access to the results.

1.68.1.2 Portability

Though Fedora Linux on AMD Athlon PC’s is our main development platform at CWI, we
do not limit our attention to this single platform. Supporting a broad range of hardware
and software platforms is an important concern.

Using standard configuration tools like automake, autoconf, and libtool, we have the
same code base compiling not only on various flavors of Unix (e.g., Linux, Cygwin, AIX,

http://monetdb.cwi.nl/Development/TestWeb/index.html
http://monetdb.cwi.nl/Development/TestWeb/Platforms/index.html

Chapter 1: General Introduction 30

IRIX, Solaris, MacOS X) but also on native Windows. Furthermore, the very code base
compiles with a wide spectrum of (C-) compilers, ranging from GNU’s gcc over several
native Unix compilers (IBM, SGI, Sun, Intel, Portland Group) to Microsoft’s Visual Studio
and Visual Studio .NET on Windows.

On the hardware side, we have (had) MonetDB running on "almost anything" from a
Intel StrongARM-based Linux PDA with 64 MB of flash memory to an SGI Origin2000
with 32 MIPS R12k CPU’s and a total of 64 GB of (shared) main memory.

1.69 Development Roadmap

In this section we summarize the MonetDB development roadmap. The information is
organized around the major system components. A precise timeline can not be given. It
depends too much on the available resources and urgency (= pressure) by our research needs
and clients.

1.69.1 Server Roadmap

The MonetDB server code base is continously being improved. A few areas under devel-
opement in the kernel area are:
• Parallelism Exploitation of multi-core systems calls for renewed attention to parallel

processing of the MonetDB kernel. Stress testing of concurrent processing may reveal
race conditions hereto undetected.

• Streaming Data A separete area is support for streaming database functionality. It
requires additions to the way we support io-channels and schedule query plans.

• Functional Enhancements Support for geographical application is underway. It consists
of a concise library for managing geometric types.

1.69.2 SQL Roadmap

The long term objective for the SQL front-end is to provide all features available in
SQL:2003. The priority for individual features is determined in an ad hoq way. The
SQL features scheduled for implementation and those that won’t be supported in the
foreseeable future are shown below.

Our current assessment of the features planned for upcoming releases, in order of priority,
are:
• Window functions Datawarehousing and data mining applications require support for

windowing functions, e.g. (x() OVER (partition by order by)
• Full text retrieval A full text retrieval support function consists of a special constructed

index over text appearing in multiple columns of a relational table. This index is
built using well-known Information Retrieval techniques, such as stemming, keyword
recognition, and stop-word reduction. Several IR projects are underway, which enhance
MonetDB with IR capabilities.

• Support for multi-media objects MonetDB has been used in several multi-media
projects, but mostly to store and manipulate derived features. Multimedia objects
can be stored as unprotected URLs, i.e. there is no guarantee the object referred to
exists upon answering a query. The functionality should be extended with image,
audio, and video types.

Chapter 1: General Introduction 31

• Replication Service A single-write multiple-read distributed replication service is pre-
pared for release mid 2007. It will provide both the concept of merge tables and selective
replication of tuples to different servers.

• GIS support Support for geographical application is underway. It consists of a concise
library for managing geometric types.

• General column and table constraint enforcement
• Internationalization of the character sets
• Full outer-join queries

The database back-end architecture prohibits easy implementation of several SQL-99
features. Those on the list below are not expected to be supported.
• Cursor based processing, because the execution engine is not based on the iterator

model deployed in other engines. A simulation of the cursor based scheme would be
utterly expensive from a performance point of view.

• Multi-level transaction isolation levels. Coarse grain isolation is provided using table
level locks.

1.69.3 Embedded MonetDB Roadmap

The embedded MonetDB software family provides support for both SQL and XQuery. The
software has been tuned to run on small scale hardware platforms.

A broader deployment of the embedded technology requires both extensions in the dis-
tributed MonetDB versions and its replication services. Continual attention is given to the
memory footprint and cpu/io resource consumptions on embedded devices.

A separate project, called the Datacell, is underway and geared at providing a streaming
environment for embedded applications.

1.70 MonetDB Version 5

The MonetDB product family consists of a large number of components developed within
our group over the last decade. Some components have already been shipped to happy
customers, some are still in the making, and others have found a resting place in the attic.

The MonetDB architecture is designed to accommodate a wide-spectrum of standardized
query language front-ends (SQL, XQuery), a variety of query transformation schemes, and
different execution platforms (interpreted materialized or pipelined, dynamic compilation).

MonetDB Version 5 is a major release of our software infrastructure. The most notable
differences are its greatly improved software stack and a new interface language, which turns
the database server back-end into an abstract database machine with its associated assembly
language (MAL). It supports backward compatibility of interfaces, tools, and source sharing
where feasible within the limited scope of resources available.

In the remainder of this section we shortly introduce the MonetDB Version 5 design
considerations and a quick overview of its architecture.

1.71 Design Considerations

Redesign of the MonetDB software stack was driven by the need to reduce the effort to
extend the system into novel directions and to reduce the Total Execution Cost (TEC).

Chapter 1: General Introduction 32

The TEC is what an end-user or application program will notice. The TEC is composed
on several cost factors:

• A) API message handling
• P) Parsing and semantic analysis
• O) Optimization and plan generation
• D) Data access to the persistent store
• E) Execution of the query terms
• R) Result delivery to the application

Choosing an architecture for processing database operations pre-supposes an intuition
on how the cost will be distributed. In an OLTP setting you expect most of the cost to
be in (P,O), while in OLAP it will be (D,E,R). In a distributed setting the components
(O,D,E) are dominant. Web-applications would focus on (A,E,R).

Such a simple characterization ignores the wide-spread differences that can be experi-
enced at each level. To illustrate, in D) and R) it makes a big difference whether the data
is already in the cache or still on disk. With E) it makes a big difference whether you are
comparing two integers, evaluation of a mathematical function, e.g., Gaussian, or a regular
expression evaluation on a string. As a result, intense optimization in one area may become
completely invisible due to being overshadowed by other cost factors.

The Version 5 infrastructure is designed to ease addressing each of these cost factors in
a well-defined way, while retaining the flexibility to combine the components needed for a
particular situation. It results in an architecture where you assemble the components for a
particular application domain and hardware platform.

The primary interface to the database kernel is still based on the exchange of text in the
form of queries and simply formatted results. This interface is designed for ease of inter-
pretation, versatility and is flexible to accommodate system debugging and application tool
development. Although a textual interface potentially leads to a performance degradation,
our experience with earlier system versions showed that the overhead can be kept within
acceptable bounds. Moreover, a textual interface reduces the programming effort otherwise
needed to develop test and application programs. The XML trend as the language for tool
interaction supports our decision.

1.72 Architecture Overview

The architecture is built around a few independent components: the MonetDB server, the
merovigian, and the client application. The MonetDB server is the heart of the system, it
manages a single physical database on one machine for all (concurrent) applications. The
merovigian program works along side a single server, keeping an eye on its behavior. If the
server accidently crashes, it is this program that will attempt an automatic restart.

The top layer consists of applications written in your favorite language. They provide
both specific functionality for a particular product, e.g., Proximity, and generic functional-
ity, e.g., the Aquabrowser or Dbvisualizer. The applications communicate with the server
using de-facto standard interface packaged, i.e., JDBC, ODBC, Perl, PHP, etc.

The middle layer consists of query language processors such as SQL and XQuery. The
former supports the core functionality of SQL’99 and extends into SQL’03. The latter

http://kdl.cs.umass.edu/software
http://www.aquafold.com
http://www.minq.se

Chapter 1: General Introduction 33

is based on the W3C standard and includes the XUpdate functionality. The query lan-
guage processors each manage their own private catalog structure. Software bridges, e.g.,
import/export routines, are used to share data between language paradigms.

M
A

L
in

te
rp

re
te

r

G
D

K
 la

ye
r

m
gu

ar
di

an

X
Q

ue
ry

co
m

pi
le

r
SQ

L
co

m
pi

le
r

RD
F

In
te

rf
ac

es
JD

BC
−P

H
P−

PE
RL

−P
Y

TH
O

N
−O

D
BC

−M
A

PI

m
se

rv
er

5
m

on
et

db

Figure 2.1

1.73 MonetDB Assembly Language (MAL)

The target language for a query compiler is the MonetDB Assembly Language (MAL). It
was designed to ease code generation and fast interpretation by the server. The compiler
produces algebraic query plans, which are turned into physical execution plans by the MAL
optimizers.

The output of a compiler is either an ascii representation of the MAL program or the
compiler is tightly coupled with the server to save parsing and communication overhead.

A snippet of the MAL code produced by the SQL compiler for the query select
count(*) from tables is shown below. It illustrates a sequences of relational opera-
tions against a table column and producing a partial result.

...
_22:bat[:oid,:oid] := sql.bind_dbat("tmp","_tables",0);
_23 := bat.reverse(_22);
_24 := algebra.kdifference(_20,_23);
_25 := algebra.markT(_24,0:oid);
_26 := bat.reverse(_25);

Chapter 1: General Introduction 34

_27 := algebra.join(_26,_20);
_28 := bat.setWriteMode(_19);
bat.append(_28,_27,true);

...

MAL supports the full breath of computational paradigms deployed in a database set-
ting. It is language framework where the execution semantics is determined by the code
transformations and the final engine choosen.

The design and implementation of MAL takes the functionality offered previously a
significant step further. To name a few:

• All instructions are strongly typed before being executed.

• It supports polymorphic functions. They act as templates that produce strongly typed
instantiations when needed.

• Function style expressions where each assignment instruction can receive multiple tar-
get results; it forms a point in the dataflow graph.

• It supports co-routines (Factories) to build streaming applications.

• Properties are associated with the program code for ease of optimization and scheduling.

• It can be readily extended with user defined types and function modules.

1.74 Execution Engine

The execution engine comes in several flavors. The default is a simple, sequential MAL
interpreter. For each MAL function call it creates a stack frame, which is initialized with
all constants found in the function body. During interpretation the garbage collector en-
sures freeing of space consumptive tables (BATs) and strings. Furthermore, all temporary
structures are garbage collected before the funtion returns the result.

This simple approach leads to an accumulation of temporary variables. They can be
freed earlier in the process using an explicit garbage collection command, but the general
intend is to leave such decisions to an optimizer or scheduler.

The execution engine is only called when all MAL instructions can be resolved against
the available libraries. Most modules are loaded when the server starts using a bootstrap
script mal init.mx Failure to find the startup-file terminates the session. It most likely
points to an error in the MonetDB configuration file.

During the boot phase, the global symbol table is initialized with MAL function and
factory definitions, and loading the pre-compiled commands and patterns. The libraries
are dynamically loaded by default. Expect tens of modules and hundreds of operations to
become readily available.

Modules can not be dropped without restarting the server. The rational behind this
design decision is that a dynamic load/drop feature is often hardly used and severely com-
plicates the code base. In particular, upon each access to the global symbol table we have
to be prepared that concurrent threads may be actively changing its structure. Especially,
dropping modules may cause severe problems by not being able to detect all references kept
around. This danger required all accesses to global information to be packaged in a critical
section, which is known to be a severe performance hindrance.

Chapter 1: General Introduction 35

1.75 Session Scenarios

In MonetDB multiple languages, optimizers, and execution engines can be combined at
run time to satisfy a wide user-community. Such an assemblage of components is called
a scenario and consists of a reader, parser, optimizer, tactic scheduler and engine. These
hooks allow for both linked-in and external components.

The languages supported are SQL, XQuery, and the Monet Assembly Language (MAL).
The default scenario handles MAL instructions, which is used to illustrate the behavior of
the scenario steps.

The MAL reader component handles interaction with a front-end to obtain a string for
subsequent compilation and execution. The reader uses the common stream package to
read data in large chunks, if possible. In interactive mode the lines are processed one at a
time.

The MAL parser component turns the string into an internal representation of the MAL
program. During this phase semantic checks are performed, such that we end up with a
type correct program.

The code block is subsequently sent to an MAL optimizer. In the default case the
program is left untouched. For other languages, the optimizer deploys language specific code
transformations, e.g., foreign-key optimizations in joins and remote query execution. All
optimization information is statically derived from the code blocks and possible catalogues
maintained for the query language at hand. Optimizers leave advice and their findings in
properties in the symbol table, see Section 3.12 [Property Management], page 62.

Once the program has thus been refined, the MAL scheduler prepares for execution
using tactical optimizations. For example, it may parallelize the code, generate an ad-hoc
user-defined function, or prepare for efficient replication management. In the default case,
the program is handed over to the MAL interpreter without any further modification.

The final stage is to choose an execution paradigm, i.e. interpretative (default), com-
pilation of an ad-hoc user defined function, dataflow driven interpretation, or vectorized
pipe-line execution by a dedicated engine.

A failure encountered in any of the steps terminates the scenario cycle. It returns to the
user for a new command.

1.76 Scenario management

Scenarios are captured in modules; they can be dynamically loaded and remain active until
the system is brought to a halt. The first time a scenario xyz is used, the system looks for
a scenario initialization routine xyzinitSystem() and executes it. It is typically used to
prepare the server for language specific interactions. Thereafter its components are set to
those required by the scenario and the client initialization takes place.

When the last user interested in a particular scenario leaves the scene, we activate its
finalization routine calling xyzexitSystem(). It typically perform cleanup, backup and
monitoring functions.

A scenario is interpreted in a strictly linear fashion, i.e. performing a symbolic optimiza-
tion before scheduling decisions are taken. The routines associated with each state in the
scenario may patch the code so as to assure that subsequent execution can use a different
scenario, e.g., to handle dynamic code fragments.

Chapter 1: General Introduction 36

The building blocks of scenarios are routines obeying a strict name signature. They
require exclusive access to the client record. Any specific information should be accessible
from there, e.g., access to a scenario specific state descriptor. The client scenario initializa-
tion and finalization brackets are xyzinitClient() and xyzexitClient().

The xyzparser(Client c) contains the parser for language XYZ and should fill the
MAL program block associated with the client record. The latter may have been initial-
ized with variables. Each language parser may require a catalog with information on the
translation of language specific datastructures into their BAT equivalent.

The xyzoptimizer(Client c) contains language specific optimizations using the MAL
intermediate code as a starting point.

The xyztactics(Client c) synchronizes the program execution with the state of the
machine, e.g., claiming resources, the history of the client or alignment of the request with
concurrent actions (e.g., transaction coordination).

The xyzengine(Client c) contains the applicable back-end engine. The default is the
MAL interpreter, which provides good balance between speed and ability to analysis its
behavior.

1.77 Server Management

This section presents the basics to manage a collection of MonetDB database servers. The
system is designed to run out of the box for most end-users.

Additional finetuning by database administrators may be required in those cases where
the MonetDB software is centrally made available or when mission critial databases are
kept on highly-reliable production platforms.

1.77.1 Start and Stop the Server

On Windows starting a MonetDB server is done by simply clicking: ’Start’ -> ’Programs’
-> ’MonetDB5 ’ -> ’MonetDB SQL Server’. This will start the MonetDB Server with SQL
support in a separate window. Although this window comes with an interactive prompt,
you should (unless you know what you are doing) keep this window minimized.

MonetDB server v5.4, based on kernel v1.20.0
Serving database ’demo’
Compiled for i686-pc-win32/32bit with 32bit OIDs dynamically linked
Copyright (c) 1993-2008 CWI, all rights reserved
Visit http://monetdb.cwi.nl/ for further information
#warning: please don’t forget to set your vault key!
#(see C:\Program Files\CWI\MonetDB5\etc\monetdb5.conf)
Listening for connection requests on mapi:monetdb://127.0.0.1:50000/
MonetDB/SQL module v2.20.2 loaded
>

The database is created in a default location with the name demo.
The textual interface shipped with the server can be started by clicking: ’Start’ ->

’Programs’ -> ’MonetDB5 ’ -> ’MonetDB SQL Client’.
If you plan to make the server accessible from remote locations then the configuration

file should be editted. See Section 1.77.4 [Database Configuration], page 38 for more details.

Chapter 1: General Introduction 37

On UNIX-like systems, MonetDB/SQL comes with the following programs: merovin-
gian, mserver5, monetdb and mclient. merovingian is a daemon process that controls
a collection of database servers, i.e. mserver5 processes, each looking after a single physical
database. Start this program to gain access to your MonetDB database farm. merovingian
is designed to be used in a system initialisation script in production environments.

With merovingian running in the background, managing the databases and their con-
nections is greatly simplified. After a fresh install the next step would typically be to create
your first database, e.g. demo.

The program monetdb is your aid here. It can create/destroy databases and it provides
options to inspect the stability/liveliness of all database servers. Database servers can be
temporarily closed for external access for maintenance, allowing for checkpointing. Let’s
create the demo database:

shell> monetdb create demo
successfully created database ’demo’

The status of all database servers can be inspected using:
shell> monetdb status

name state uptime health last crash
demo stopped

This report is helpful to determine possible instabilities and heavy loaded servers. In
this case, it indicates that our database exists, but that no server is running yet.

shell> monetdb start demo
starting database ’demo’... done
shell> monetdb status demo

name state uptime health last crash
demo running 1m 18s 100%, 0s -

Users can now establish a connection using any of the user interfaces. The most common
one is mclient, which provides a light-weight textual interface. For example, the statements
below illustrate a short session. The session is closed using the mclient console command
\q.

shell> mclient -lsql --database=demo
sql>CREATE USER "voc" WITH PASSWORD ’voc’ NAME ’VOC Explorer’ SCHEMA "sys";
sql>CREATE SCHEMA "voc" AUTHORIZATION "voc";
sql>ALTER USER "voc" SET SCHEMA "voc";
sql>\q

See for a more complete session VOC demo.
A database can be closed for maintenance. Doing so blocks any new non-administrator

clients to connect to the server.
shell> monetdb lock demo

The effect is that only the system administrator can gain access to the server. All other
users are warned using the message ’Database temporarily unavailable for maintenance’
upon an attempt to connect. A database under maintenance will also not be automatically
started by merovingian if a client requests access to it, while not running.

After maintenance has been completed, the database server can be opened for connec-
tions using monetdb release demo.

"SQL/QuickTour/VOC/index.html"

Chapter 1: General Introduction 38

For more details on merovingian and monetdb inspect their manual pages.

1.77.2 Database Dumps

An ascii-based database dump is a safe scheme to transport a database to another plat-
form or to migrate to an (incompatible) new version of MonetDB. This feature is standard
available in mclient.

1.77.3 Server Architecture

Maintenance of the MonetDB servers is based on a clear separation of tasks between multiple
processes, directories, and their dependencies.

The anchor point for MonetDB is a directory (or folder) called the dbfarm. It contains
sub-directories, one for each database. Similar, the database logs and checkpoint anchor
points are dblogs and dbarchive. They should preferably be mounted on different storage
devices.

Access restrictions are inherited from the operating system authorization scheme. It may
proof useful to introduce a separate account for controlling access to MonetDB resources.

1.77.4 Database Configuration

The database environment is described in a configuration file, which is used by server-side
applications, e.g. merovingian and mserver5. A default version is created upon sys-
tem installation in prefix/etc/monetdb5.conf. Below we illustrate its most important
components, for the remaining details look at the configuration file itself.

• prefix=/ufs/myhome/monet5/Linux

• exec prefix=${prefix}

• dbfarm=${prefix}/var/MonetDB5/dbfarm

• monet mod path=${exec prefix}/lib(64)/MonetDB5

• mal init=${prefix}/lib(64)/MonetDB5/mal init.mal

• sql init=${exec prefix }/lib/MonetDB5/sql init.sql

• merovingian log=${prefix}/var/merovingian.log

• mapi open=false

The header consist of system wide information. The prefix and exec prefix describe
the location where MonetDB has been installed. monet mod path tells where to find
the libraries. The bootstrap file for the kernel is given by mal init. These arguments are
critical for a proper working server.

The option sql init is a comma separated list of SQL files to be executed upon system
restart. It is primarily used to make SQL library functions known to all users.

The logs are typically stored on a different storage medium to protect the database
against accidental hardware loss.

Client connections are limited to those originating from the same machine. To make the
database accessible from remote sites the option mapi open should be set to true.

Chapter 1: General Introduction 39

1.77.5 Checkpoint and Recovery

Safeguarding the content of your database against disasters, both hardware and malicious
use, requires carefully planned steps. The first line of defense is to keep the database logs
physically separated from the database store itself, e.g. on different disks. The second line
of defense is to regularly create a database dump or full checkpoint. This is a consolidated
snapshot and should be stored away at a failure independent location, e.g. a vault. Since
a dump is a rather expensive operation, the third line of defense is to keep differential lists
from the last dump based on the update logs. It forms a basis to rollback to a known correct
state.

We are working on this topic
At the moment the best way to make a checkpoint is to make a database dump while

the database is under maintenance. Use the monetdb utility to lock the database before
dumping its contents.

1.77.6 Embedded Server

The Embedded Server version is optimized for running on small board computers as a
database back-end for a single client. It is of particular interest if you need database
functionality within a limited application setting, e.g a self-contained database distributed
as part of the application. Within this context, much of the code to facilitate and protect
concurrent use of the kernel can be disabled. For example, locking of critical resources in
the kernel is not needed anymore, which results in significant performance improvements.

The approach taken is to wrap a server such that the interaction between client code
and server can still follow the Mapi protocol. It leads to a C-program with calls to the
Mapi library routines, which provides some protection against havoc behaviour. From a
programming view, it differs from a client-server application in the startup and (implicit)
termination.

You normally only have to change the call mapi connect() into embedded sql()
(or embedded mal()). It requires an optional argument list to refine the environment
variables used by the server. In combination with the header file embeddedclient.h it
provides the basis to compile and link the program.

The behavior of an embedded SQL program can be simulated with a server started as
follows:

mserver5 --set embedded=yes --dbinit="include sql;" &

As a result, the server starts in ’daemon’ mode, loads the SQL support library, and waits
for a connection. Only one connection is permitted.

1.77.6.1 Mbedded Example

A minimalistic embedded application is shown below. It creates a temporary table in the
database, fills it, and retrieves the records for some statistics gathering.

The key operation is embedded sql() which takes an optional environment argument
list. Upon success of this call, there will be a separate server thread running in the same user
space to handle the database requests. A short-circuit interaction is established between
the application and the kernel using in memory buffers.

The body of the program consists of the Mapi calls. It terminates with a call to
mapi disconnect() which lets the MonetDB thread gracefully die.

Chapter 1: General Introduction 40

The tight coupling of application and kernel code also carries some dangers. Many of
the MonetDB data structures can be directly accessed, or calls to the kernel routines are
possible. It is highly advised to stick to the Mapi interaction protocol. It gives a little more
protection against malicious behavior or unintended side-effects.

#include <embeddedclient.h>
#include <stdlib.h>

#define die(dbh,hdl) (hdl?mapi_explain_result(hdl,stderr): \
dbh?mapi_explain(dbh,stderr): \
fprintf(stderr,"command failed\n"), \
exit(-1))

int
main()
{

Mapi dbh;
MapiHdl hdl = NULL;
int i;

dbh = embedded_sql(NULL, 0);
if (dbh == NULL || mapi_error(dbh))

die(dbh, hdl);

/* switch off autocommit */
if (mapi_setAutocommit(dbh, 0) != MOK || mapi_error(dbh))

die(dbh, NULL);

if ((hdl = mapi_query(dbh, "create table emp (name varchar(20), age int)")) == NULL ||
mapi_error(dbh))
die(dbh, hdl);

if (mapi_close_handle(hdl) != MOK)
die(dbh, hdl);

for (i = 0; i < 1000; i++) {
char query[100];

snprintf(query, 100, "insert into emp values(’user%d’, %d)", i, i % 82);
if ((hdl = mapi_query(dbh, query)) == NULL || mapi_error(dbh))

die(dbh, hdl);
if (mapi_close_handle(hdl) != MOK)

die(dbh, hdl);
}

if ((hdl = mapi_query(dbh, "select * from emp")) == NULL || mapi_error(dbh))
die(dbh, hdl);

Chapter 1: General Introduction 41

i = 0;
while (mapi_fetch_row(hdl)) {

char *age = mapi_fetch_field(hdl, 1);

i = i + atoi(age);
}
if (mapi_error(dbh))

die(dbh, hdl);
if (mapi_close_handle(hdl) != MOK)

die(dbh, hdl);
printf("The footprint is %d Mb \n", i);

mapi_disconnect(dbh);
return 0;

}

The embedded MonetDB engine is available as the library libembedded sql.a (and
libembedded mal.a) to be linked with a C-program. Provided the programming environ-
ment have been initialized properly, it suffices to prepare the embedded application using

gcc -g myprog.c -o myprog \
‘monetdb-sql-config --cflags --libs‘ \
‘monetdb-clients-config --cflags --libs‘ \
‘monetdb-config --cflags --libs‘ \
‘monetdb5-config --cflags --libs‘ \
-lMapi -lembeddedsql5

The configuration parameters for the server are read from its default location in the
file system. In an embedded setting this location may not be accessible. It requires calls
to mo add option() before you asks for the instantiation of the server code itself. The
code snippet below illustrate how our example is given hardwired knowledge on the desired
settings:

main(){
opt *set = NULL;
int setlen = 0;

...
if (!(setlen = mo_builtin_settings(&set)))

usage(prog);
...
/* needed to prevent the MonetDB config file from being used */

setlen = mo_add_option(&set, setlen, opt_config, "dbfarm", ".");
setlen = mo_add_option(&set, setlen, opt_config, "dbname", "demo");

...
setlen = mo_system_config(&set, setlen);
mid = embedded_mal(set, setlen);

For a complete picture see the sample program in the distribution.

http://monetdb.cwi.nl/MonetDB5/src/tools/prog.c

Chapter 1: General Introduction 42

1.77.6.2 Limitations for Embedded MonetDB

In embedded applications the memory footprint is a factor of concern. The raw footprint
as delivered by the Unix size command is often used. It is, however, also easily misleading,
because the footprint depends on both the code segments and buffered database partitions
in use. Therefore it makes sense to experiment with a minimal, but functionally complete
application to decide if the resources limitations are obeyed.

The minimal static footprint of MonetDB is about 16 Mb (+ ca 4Mb for SQL). After
module loading the space quickly grows to about 60Mb. This footprint should be reduced.

The embedded application world calls for many, highly specialized enhancements. It is
often well worth the effort to carve out the functionality needed from the MonetDB software
packages. The easiest solution to limit the functionality and reduce resource consumption
is to reduce the modules loaded. This requires patches to the startup scripts.

The benefit of an embedded database application also comes with limitations. The one
and foremost limitation of embedded MonetDB is that the first application accessing the
database effectively locks out any other concurrent use. Even in those situations where
concurrent applications merely read the database, or create privately held tables.

Chapter 2: Client Interfaces 43

2 Client Interfaces

Clients gain access to the Monet server through a internet connection or through its server
console. Access through the internet requires a client program at the source, which addresses
the default port of a running server. The functionality of the server console is limited. It is
a textual interface for expert use.

At the server side, each client is represented by a session record with the current sta-
tus, such as name, file descriptors, namespace, and local stack. Each client session has
a dedicated thread of control, which limits the number of concurrent users to the thread
management facilities of the underlying operating system. A large client base should be
supported using a single server-side client thread, geared at providing a particular service.

The number of clients permitted concurrent access is a compile time option. The console
is the first and is always present. It reads from standard input and writes to standard output.

Client sessions remain in existence until the corresponding communication channels
break or its retention timer expires The administrator and owner of a sesssion can ma-
nipulate the timeout with a system call.

2.1 The Mapi Client Utility

The mclient program is the universal command-line tool that implements the MAPI pro-
tocol for client-server interaction with MonetDB.

On a Windows platform it can be started using start->MonetDB->MonetDB SQL Client.
Alternatively, you can use the command window to start mclient.exe. Be aware that your
environment variables are properly set to find the libraries of interest.

On a Linux platform it provides readline functionality, which greatly improves user
interaction. A history can be maintained to ease interaction over multiple sessions.

A mclient requires minimally a language and host or port argument. The default setting
is geared at establishing a guest connection to a SQL or XQuery database at a default server
running on the localhost. The -h hostname specifies on which machine the MonetDB server
is running. If you communicate with a MonetDB server on the same machine, it can be
omitted.

The timer switch reports on the round-about time for queries sent to the server. It
provides a first impression on the execution cost.

Usage: mclient --language=(sql|xquery|mal|mil) [options]

Options are:
-d database | --database=database database to connect to
-e | --echo echo the query
-f kind | --format=kind specify output format {dm,xml} for XQuery, or {csv,tab,raw,sql,xml}
-H | --history load/save cmdline history (default off)
-h hostname | --host=hostname host to connect to
-i | --interactive read stdin after command line args
-l language | --language=lang {sql,xquery,mal,mil}
-L logfile | --log=logfile save client/server interaction
-P passwd | --passwd=passwd password

Chapter 2: Client Interfaces 44

-p portnr | --port=portnr port to connect to
-s stmt | --statement=stmt run single statement
-t | --time time commands
-X | --Xdebug trace mapi network interaction
-u user | --user=user user id
-? | --help show this usage message
-| cmd | --pager=cmd for pagination

SQL specific opions
-r nr | --rows=nr for pagination
-w nr | --width=nr for pagination
-D | --dump create an SQL dump

XQuery specific options
-C colname | --collection=name collection name
-I docname | --input=docname document name, XML document on standard input

The default mapi_port TCP port used is 50000. If this port happens to be in use on
the server machine (which generally is only the case if you run two MonetDB servers on
it), you will have to use the -p port do define the port in which the mserver is listening.
Otherwise, it may also be omitted. If there are more than one mserver running you must
also specify the database name -d database. In this case, if your port is set to the wrong
database, the connection will be always redirect to the correct one. Note that the default
port (and other default options) can be set in the server configuration file.

Within the context of each query language there are more options. They can be shown
usin the command \? or using the commandline.

For SQL there are several knobs to tune for a better rendering of result tables (\w).

shell> mclient -lsql --help
\? - show this message
\<file - read input from file
\>file - save response in file, or stdout if no file is given
\|cmd - pipe result to process, or stop when no command is given
\h - show the readline history
\t - toggle timer
\e - echo the query in sql formatting mode
\D table- dumps the table, or the complete database if none given.
\d table- describe the table, or the complete database if none given.
\A - enable auto commit
\a - disable auto commit
\f - format using a built-in renderer {csv,tab,raw,sql,xml}
\w# - set maximal page width (-1=raw,0=no limit, >0 max char)
\r# - set maximum rows per page (-1=raw)
\L file - save client/server interaction
\X - trace mclient code
\q - terminate session

Chapter 2: Client Interfaces 45

2.1.1 Online help

The textual interface mclient supports a limited form of online help commands. The
argument is a (partial) operator call, which is looked up in the symbol table. If the pattern
includes a ’(’ it also displays the signature for each match. The argument types and
address attributes are also shown if the call contains the closing bracket ’)’.

>?bat.is
bat.isSynced
bat.isCached
bat.isPersistent
bat.isTransient
bat.isSortedReverse
bat.isSorted
bat.isaSet
bat.isaKey
>?bat.isSorted(
command bat.isSorted(b:bat[:any_1,:any_2]):bit
>?bat.isSorted()
command bat.isSorted(b:bat[:any_1,:any_2]):bit address BKCisSorted;
Returns whether a BAT is ordered on head or not.

The module and function names can be replaced by the wildcard character ’*’. General
regulat pattern matching is not supported.

>?*.print()
command color.print(c:color):void
pattern array.print(a:bat[:any_1,:any_2],b:bat[:any_1,:int]...):void
pattern io.print(b1:bat[:any_1,:any]...):int
pattern io.print(order:int,b:bat[:any_1,:any],b2:bat[:any_1,:any]...):int
pattern io.print(val:any_1):int
pattern io.print(val:any_1,lst:any...):int
pattern io.print(val:bat[:any_1,:any_2]):int

The result of the help command can also be obtained in a BAT, using the commands
manual.help. Keyword based lookup is supported by the operation manual.search;
Additional routines are available in the inspect module to built reflexive code.

2.2 Jdbc Client

The textual client using the JDBC protocol comes with several options to fine-tune the
interaction with the database server. A synopsis of the calling arguments is given below

java -jar ${prefix}/share/MonetDB/lib/jdbcclient.jar \
[-h host[:port]] [-p port] \

[-f file] [-u user] [-l language] [-b [database]] \
[-d [table]] [-e] [-X<opt>]

or using long option equivalents –host –port –file –user –language –dump –echo
–database. Arguments may be written directly after the option like -p50000.

If no host and port are given, localhost and 50000 are assumed. An .monetdb file may
exist in the user’s home directory. This file can contain preferences to use each time the

Chapter 2: Client Interfaces 46

program is started. Options given on the command line override the preferences file. The
.monetdb file syntax is <option>=<value> where option is one of the options host, port,
file, mode debug, or password. Note that the last one is perilous and therefore not available
as command line option. If no input file is given using the -f flag, an interactive session is
started on the terminal.

NOTE The JDBC protocol does not support the SQL DEBUG <query>, PROFILE
<query>, and TRACE <query> options. Use the mclient tool instead. OPTIONS

-h --host The hostname of the host that runs the MonetDB database. A port number
can be supplied by use of a colon, i.e. -h somehost:12345.

-p --port The port number to connect to.

-f --file A file name to use either for reading or writing. The file will be used for writing
when dump mode is used (-d –dump). In read mode, the file can also be an
URL pointing to a plain text file that is optionally gzip compressed.

-u --user The username to use when connecting to the database.

-d --database
Try to connect to the given database (only makes sense if connecting to a
DatabasePool, M5 or equivalent process).

-l --language
Use the given language, for example ’xquery’.

--help This screen.

--version
Display driver version and exit.

-e --echo Also outputs the contents of the input file, if any.

-q --quiet
Suppress printing the welcome header.

-D --dump Dumps the given table(s), or the complete database if none given.

EXTRA OPTIONS

-Xdebug Writes a transmission log to disk for debugging purposes. If a file name is given,
it is used, otherwise a file called monet<timestamp>.log is created. A given file
will never be overwritten; instead a unique variation of the file is used.

-Xembedded
Uses an "embedded" server instance. The argument to this option should be
in the form of path/to/mserver:dbname[:dbfarm[:dbinit]].

-Xhash Use the given hash algorithm during challenge response. Supported algorithm
names: SHA1, MD5, plain.

-Xoutput The output mode when dumping. Default is sql, xml may be used for an
experimental XML output.

-Xbatching
Indicates that a batch should be used instead of direct communication with
the server for each statement. If a number is given, it is used as batch size.

Chapter 2: Client Interfaces 47

I.e. 8000 would execute the contents on the batch after each 8000 read rows.
Batching can greatly speedup the process of restoring a database dump.

Chapter 3: MonetDB Assembly Language (MAL) 48

3 MonetDB Assembly Language (MAL)

The primary textual interface to the Monetdb kernel is a simple, assembly-like language,
called MAL. The language reflects the virtual machine architecture around the kernel li-
braries and has been designed for speed of parsing, ease of analysis, and ease of target
compilation by query compilers. The language is not meant as a primary programming
language, or scripting language. Such use is even discouraged.

Furthermore, a MAL program is considered a specification of intended computation and
data flow behavior. It should be understood that its actual evaluation depends on the
execution paradigm choosen in a scenario. The program blocks can both be interpreted as
ordered sequences of assembler instructions, or as a representation of a data-flow graph that
should be resolved in a dataflow driven manner. The language syntax uses a functional style
definition of actions and mark those that affect the flow explicitly. Flow of control keywords
identify a point to chance the interpretation paradigm and denote a synchronization point.

MAL is the target language for query compilers, such as the SQL and XQuery front-
ends. Even simple SQL queries generate a long sequence of MAL instructions. They
represent both the administrative actions to ensure binding and transaction control, the
flow dependencies to produce the query result, and the steps needed to prepare the result
set for delivery to the front-end.

Only when the algebraic structure is too limited (e.g. updates), or the database back-
end lacks feasible builtin bulk operators, one has to rely on more detailed flow of control
primitives. But even in that case, the basic blocks to be processed by a MAL back-end are
considered large, e.g. tens of simple bulk assignment instructions.

The remainder of this chapter provide a concise overview of the language features and
illustrative examples.

3.1 MAL Literals

Literals in MAL follow the lexical conventions of the programming language C. A default
type is attached, e.g. the literal 1 is typed as an int value. Likewise, the literal 3.14 is
typed flt rather than dbl.

A literal can be coerced to another type by tagging it with a type classifier, provided a
coercion operation is defined. For example, 1:lng marks the literal as of type lng. and
"1999-12-10":date creates a date literal.

MonetDB comes with the hardwired types bit, bte, chr, wrd, sht, int, lng, oid,
flt, dbl, str and bat, the bat identifier. The kernel code has been optimized to deal with
these types efficiently, i.e. without unnecessary function call overheads. In addition, the
system supports temporal types date, daytime, time, timestamp, timezone, extensions
to deal with IPv4 addresses and URLs using inet, url, and several types to interact more
closely with the kernel lock, semphore. This list can be extended with user defined types.

3.2 MAL Variables

Variables are denoted by identifers and implicitly defined upon first use. They take on a
type through a type classifier or inherit it from the context in which they are first used, see
Section 3.8 [MAL Type System], page 57.

Chapter 3: MonetDB Assembly Language (MAL) 49

Variables are organized into two classes, starting with and without an underscore. The
latter are reserved as MAL parser tempoaries, whose name aligns with an entry in the
symbol table. In general they can not be used in MAL programs, but they may become
visible in MAL program listings or during debugging.

3.3 Instructions

A MAL instruction has purposely a simple format. It is syntactically represented by an
assignment, where an expression (function call) delivers results to multiple target variables.
The assignment patterns recognized are illustrated below.

(t1,..,t32) := module.fcn(a1,..,a32);
t1 := module.fcn(a1,..,a32);
t1 := v1 operator v2;
t1 := literal;
(t1,..,tn) := (a1,..,an);

Operators are grouped into user defined modules. Ommission of the module name is
interpreter as the user module.

Simple binary arithmetic operations are merely provided as a short-hand, e.g. the ex-
pression t:=2+2 is converted directly into t:= calc.+(2,2).

Target variables are optional. The compiler introduces temporary variables to hold the
result of the expression upon need. They won’t show up when you list the MAL program
unless it is used elsewhere.

For parsing simplicity, each instruction fits on a single line. Comments start with a
sharp ’#’ and continues to the end of the line. They are retained in the internal code
representation to ease debugging of compiler generated MAL programs.

The data structure to represent a MAL block is kept simple. It contains a sequence of
MAL statements and a symbol table. The MAL instruction record is a code byte string
overlaid with the instruction pattern, which contains references into the symbol tables and
administrative data for the interpreter.

This method leads to a large allocated block, which can be easily freed. Variable- and
statement- block together describe the static part of a MAL procedure. It carries enough
information to produce a listing and to aid symbolic debugging.

3.4 MAL Flow-of-control

The flow of control within a MAL program block can be changed by tagging a statement
with either return, yield, barrier, catch, leave, redo, or exit.

The flow modifiers return and yield mark the end of a call and return one or more
results to the calling environment. The return and yield are followed by a target list or
an assignment, which is executed first.

The barrier (catch) and exit pair mark a guarded statement block. They may be
nested to form a proper hierarchy identified by their primary target variable, also called the
control variable.

The leave and redo are conditional flow modifiers. The control variable is used after
the assignment statement has been evaluated to decide on the flow-of-control action to be

Chapter 3: MonetDB Assembly Language (MAL) 50

taken. Built-in controls exists for booleans and numeric values. The barrier block is opened
when the control variable holds true, when its numeric value >= 0, or when it is a non-empty
string. The nil value blocks entry in all cases.

Once inside the barrier you have an option to prematurely leave it at the exit statement
or to redo interpretation just after the corresponding barrier statement. Much like ’break’
and ’continue’ statements in the programming language C. The action is taken when the
condition is met.

The exit marks the exit for a block. Its optional assignment can be used to re-initialize
the barrier control variables or wrap-up any related administration.

The barrier blocks can be properly nested to form a hierarchy of basic blocks. The
control flow within and between blocks is simple enough to deal with during an optimizer
stage. The redo and leave statements mark the partial end of a block. Statements within
these blocks can be re-arranged according to the data-flow dependencies. The order of
partial blocks can not be changed that easily. It depends on the mutual exclusion of the
data flows within each partial block.

Common guarded blocks in imperative languages are the for-loop and if-then-else con-
structs. They can be simulated as follows.

Consider the statement for(i=1;i<10;i++) print(i). The (optimized) MAL block to
implement this becomes:

i:= 1;
barrier B:= i<10;

io.print(i);
i:= i+1;

redo B:= i<10;
exit B;

Translation of the statement if(i<1) print("ok"); else print("wrong"); becomes:

i:=1;
barrier ifpart:= i<1;

io.print("ok");
exit ifpart;
barrier elsepart:= i>=1;

io.print("wrong");
exit elsepart;

Note that both guarded blocks can be interchanged without affecting the outcome. More-
over, neither block would have been entered if the variable happens to be assigned nil.

The primitives are sufficient to model a wide variety of iterators, whose pattern look
like:

barrier i:= M.newIterator(T);
elm:= M.getElement(T,i);
...
leave i:= M.noMoreElements(T);
...
redo i:= M.hasMoreElements(T);

exit i:= M.exitIterator(T);

Chapter 3: MonetDB Assembly Language (MAL) 51

The semantics obeyed by the iterator implementations is as follows. The redo expression
updates the target variable i and control proceeds at the first statement after the barrier
when the barrier is opened by i. If the barrier could not be re-opened, execution proceeds
with the first statement after the redo. Likewise, the leave control statement skips to the
exit when the control variable i shows a closed barrier block. Otherwise, it continues with
the next instruction. Note, in both failed cases the control variable is possibly changed.

A recurring situation is to iterate over the elements in a BAT. This is supported by an
iterator implementation for BATs as follows:

barrier (idx,hd,tl):= bat.newIterator(B);
...
redo (idx,hd,tl):= bat.hasMoreElements(B);

exit (ids,hd,tl);

Where idx is an integer to denote the row in the BAT, hd and tl denote values of the
current element.

3.5 Exception handling

MAL comes with an exception handling mechanism, similar in style as found in modern
programming languages. Exceptions are considered rare situations that alter the flow of
control to a place where they can be handled. After the exceptional case has been handled
the following options exist a) continue where it went wrong, b) retry the failed instruction,
c) leave the block where the exception was handled, or d) pass the exception to an enclosing
call. The current implementation of the MAL interpreter only supports c) and d).

3.5.1 Exception control

The exception handling keywords are: catch and raise The catch marks a point in the
dataflow where an exception raised can be dealt with. Any statement between the point
where it is raised and the catch block is ignored. Moreover, the catch ... exit block
is ignored when no errors have occurred in the preceeding dataflow structure. Within the
catch block, the exception variable can be manipulated without constraints.

An exception message is linked with a exception variable of type string. If this variable
is defined in the receiving block, the exception message can be delivered. Otherwise, it
implicitly raises the exception in the surrounding scope. The variable ANYexception can
be used to catch them irrespective of their class.

After an exception has been dealt with the catch block can be left at the normal exit
with the option leave or continue after the failed instruction using a redo. The latter
case assumes the caught code block has been able to provide an alternative for the failed
instruction. [todo, the redo from failed instruction is not implemented yet]

Both leave and redo are conditional flow of control modifiers, which trigger on a non-
empty string variable. An exception raised within a catch-block terminates the function
and returns control to the enclosing environment.

The argument to the catch statement is a target list, which holds the exception variables
you are interested in.

The snippet below illustrates how an exception raised in the function io.read is caught
using the exception variable IOerror. After dealing with it locally, it raises a new exception
FATALerror for the enclosing call.

Chapter 3: MonetDB Assembly Language (MAL) 52

io.write("Welcome");
...
catch IOerror:str;
print("input error on reading password");
raise FATALerror:= "Can’t handle it";
exit IOerror;

Since catch is a flow control modifier it can be attached to any assignment statement.
This statement is executed whenever there is no exception outstanding, but will be ignored
when control is moved to the block otherwise.

3.5.2 Builtin exceptions

The policy implemented in the MAL modules, and recognized by the interpreter, is to return
a string value by default. A NULL return value indicates succesful execution; otherwise the
string encodes information to analyse the error occurred.

This string pattern is strictly formatted and easy to analyse. It starts with the name of
the exception variable to be set, followed by an indication where the exception was raise,
i.e. the function name and the program counter, and concludes with specific information
needed to interpret and handle the exception.

For example, the exception string ’MALException:Admin.main[2]:address of
function missing’ denotes an exception raised while typechecking a MAL program.

The exceptions captured within the kernel are marked as ’GDKerror’. At that level
there is no knowledge about the MAL context, which makes interpretation difficult for the
average programmer. Exceptions in the MAL language layer are denoted by ’MALerror’,
and query language exceptiosn fall in their own class, e.g. ’SQLerror’. Exceptions can be
cascaded to form a trail of exceptions recognized during the exection.

3.6 Functions

MAL comes with a standard functional abstraction scheme. Functions are represented
by MAL instruction lists, enclosed by a function signature and end statement. The
function signature lists the arguments and their types. The end statement marks the end
of this sequence. Its argument is the function name.

An illustrative example is:

function user.helloWorld(msg:str):str;
io.print(msg);
msg:= "done";
return msg;

end user.helloWorld;

The module name ’user’ designates the collection to which this function belongs. A
missing module name is considered a reference to the current module, i.e. the last module
or atom context openend. All user defined functions are assembled in the module user by
default.

The functional abstraction scheme comes with several variations: commands, pat-
terns, and factories. They are discussed shortly.

Chapter 3: MonetDB Assembly Language (MAL) 53

3.6.1 Polymorphic Functions

Polymorphic functions are characterised by type variables denoted by :any and an optional
index. Each time a polymorphic MAL function is called, the symbol table is first inspected
for the matching strongly typed version. If it does not exists, a copy of the MAL program
is generated, whereafter the type variables are replaced with their concrete types. The new
MAL program is immediately type checked and, if no errors occured, added to the symbol
table.

The generic type variable :any designates an unknown type, which may be filled at type
resolution time. Unlike indexed polymorphic type arguments, :any type arguments match
possibly with different concrete types.

An example of a parameterised function is shown below:

function user.helloWorld(msg:any_1):any_1;
io.print(msg);
return user.helloWorld;

end helloWorld;

The type variables ensure that the return type equals the argument type. Type variables
can be used at any place where a type name is permitted. Beware that polymorphic typed
variables are propagated throughout the function body. This may invalidate type resolutions
decisions taken earlier (See Section 3.8 [MAL Type System], page 57).

This version of helloWorld can also be used for other arguments types, i.e.
bit,sht,lng,flt,dbl,.... For example, calling helloWorld(3.14:flt) echoes a float
value.

3.6.2 C functions

The MAL function body can also be implemented with a C-function. They are introduced
to the MAL type checker by providing their signature and an address qualifier for linkage.

We distinguish both command and pattern C-function blocks. They differ in the
information accessible at run time. The command variant calls the underlying C-function,
passing pointers to the arguments on the MAL runtime stack. The pattern command is
passed pointers to the MAL definition block, the runtime stack, and the instruction itself.
It can be used to analyse the types of the arguments directly.

For example, the definitions below link the kernel routine BKCinsert bun with the
function bat.insert(). It does not fully specify the result type. The io.print() pattern
applies to any BAT argument list, provided they match on the head column type. Such a
polymorphic type list may only be used in the context of a pattern.

command bat.insert(b:bat[:any_1,:any_2], ht:any_1, tt:any_2)
:bat[:any_1,:any_2]
address BKCinsert_bun;

pattern io.print(b1:bat[:any_1,:any]...):int
address IOtable;

Chapter 3: MonetDB Assembly Language (MAL) 54

3.7 Factories

A convenient programming construct is the co-routine, which is specified as an ordinary
function, but maintains its own state between calls, and permits re-entry other than by the
first statement.

The random generator example is used to illustrate its definition and use.

factory random(seed:int,limit:int):int;
rnd:=seed;
lim:= limit;

barrier lim;
leave lim:= lim-1;
rnd:= rnd*125;
yield rnd:= rnd % 32676;
redo lim;

exit lim;
end random;

The first time this factory is called, a plant is created in the local system to handle the
requests. The plant contains the stack frame and synchronizes access.

In this case it initializes the generator. The random number is generated and yield
as a result of the call. The factory plant is then put to sleep. The second call received
by the factory wakes it up at the point where it went to sleep. In this case it will find a
redo statement and produces the next random number. Note that also in this case a seed
and limit value are expected, but they are ignored in the body. This factory can be called
upon to generate at most ’limit’ random numbers using the ’seed’ to initialize the generator.
Thereafter it is being removed, i.e. reset to the original state.

A cooperative group of factories can be readily constructed. For example, assume we
would like the random factories to respond to both random(seed,limit) and random().
This can be defined as follows:

factory random(seed:int,limit:int):int;
rnd:=seed;
lim:= limit;

barrier lim;
leave lim:= lim-1;
rnd:= rnd*125;
yield rnd:= rnd % 32676;
redo lim;

exit lim;
end random;

factory random():int;
barrier forever:=true;

yield random(0,0);
redo forever;

exit forever;
end random;

Chapter 3: MonetDB Assembly Language (MAL) 55

3.7.1 Factory Ownership

For simple cases, e.g. implementation of a random function, it suffices to ensure that the
state is secured between calls. But, in a database context there are multiple clients active.
This means we have to be more precise on the relationship between a co-routine and the
client for which it works.

The co-routine concept researched in Monet 5 is the notion of a ’factory’, which consists of
’factory plants’ at possibly different locations and with different policies to handle requests.
Factory management is limited to its owner, which is derived from the module in which it
is placed. By default Admin is the owner of all modules.

The factory produces elements for multiple clients. Sharing the factory state or even
remote processing is up to the factory owner. They are set through properties for the factory
plant.

The default policy is to instantiate one shared plant for each factory. If necessary, the
factory can keep track of a client list to differentiate the states. A possible implementation
would be:

factory random(seed:int,clientid:int):int;
clt:= bat.new(:int,:int);
bat.insert(clt,clientid,seed);

barrier always:=true;
rnd:= algebra.find(clt,clientid);

catch rnd; #failed to find client
bat.insert(clt,clientid,seed);
rnd:= algebra.find(clt,clientid);

exit rnd;
rnd:= rnd * 125;
rnd:= rnd % 32676;
algebra.replace(clt,clientid,rnd);
yield rnd;
redo always;

exit always;
end random;

The operators to built client aware factories are, factories.getCaller(), which re-
turns a client index, factories.getModule() and factories.getFunction(), which
returns the identity of scope enclosed.

To illustrate, the client specific random generator can be shielded using the factory:

factory random(seed:int):int;
barrier always:=true;

clientid:= factories.getCaller();
yield user.random(seed, clientid);
redo always;

exit always;
end random;

Chapter 3: MonetDB Assembly Language (MAL) 56

3.7.2 Complex Factories

The factory scheme can be used to model a volcano-style query processor. Each node in
the query tree is an iterator that calls upon the operands to produce a chunk, which are
combined into a new chunk for consumption of the parent. The prototypical join(R,S) query
illustrates it. The plan does not test for all boundary conditions, it merely implements a
nested loop. The end of a sequence is identified by a NIL chunk.

factory query();
Left:= sql.bind("relationA");
Right:= sql.bind("relationB");
rc:= sql.joinStep(Left,Right);

barrier rc!= nil;
io.print(rc);
rc:= sql.joinStep(Left,Right);
redo rc!= nil;

exit rc;
end query;

#nested loop join
factory sql.joinStep(Left:bat[:any,:any],Right:bat[:any,:any]):bat[:any,:any];

lc:= bat.chunkStep(Left);
barrier outer:= lc != nil;

rc:= bat.chunkStep(Right);
barrier inner:= rc != nil;

chunk:= algebra.join(lc,rc);
yield chunk;
rc:= bat.chunkStep(Right);
redo inner:= rc != nil;

exit inner;
lc:= bat.chunkStep(Left);
redo outer:= lc != nil;

exit outer;
we have seen everything
return nil;

end joinStep;

#factory for left branch
factory chunkStepL(L:bat[:any,:any]):bat[:any,:any];

i:= 0;
j:= 20;
cnt:= algebra.count(L);

barrier outer:= j<cnt;
chunk:= algebra.slice(L,i,j);
i:= j;
j:= i+ 20;
yield chunk;
redo loop:= j<cnt;

Chapter 3: MonetDB Assembly Language (MAL) 57

exit outer;
send last portion
chunk:= algebra.slice(L,i,cnt);
yielD chunk;
return nil;

end chunkStep;

#factory for right leg
factory chunkStepR(L:bat[:any,:any]):bat[:any,:any];

So far we haven’t re-used the pattern that both legs are identical. This could be mod-
eled by a generic chunk factory. Choosing a new factory for each query steps reduces the
administrative overhead.

3.7.3 Materialized Views

An area where factories might be useful are support for materialized views, i.e. the result
of a query is retained for ease of access. A simple strategy is to prepare the result once
and return it on each successive call. Provided the arguments have not been changed. For
example:

factory view1(l:int, h:int):bat[:oid,:str];
a:bat[:oid,:int]:= bbp.bind("emp","age");
b:bat[:oid,:str]:= bbp.bind("emp","name");

barrier always := true;
lOld := l;
hOld := h;
c := algebra.select(a,l,h);
d := algebra.semijoin(b,c);

barrier available := true;
yield d;
leave available := calc.!=(lOld,l);
leave available := calc.!=(hOld,h);
redo available := true;

exit available;
redo always;

exit always;
end view1;

The code should be extended to also check validity of the BATs. It requires a check
against the last transaction identifier known.

The Factory concept is still rather experimental and many questions should be consid-
ered, e.g. What is the lifetime of a factory? Does it persists after all clients has disappeared?
What additional control do you need? Can you throw an exception to a Factory?

3.8 Type implementation

Chapter 3: MonetDB Assembly Language (MAL) 58

3.9 MAL Type System

The MAL type module overloads the atom structure managed in the GDK library. For
the time being, we assume GDK to support at most 127 different atomic types. Type
composition is limited to at most two builtin types to form a BAT. Furthermore, the
polymorphic type any can be qualified with a type variable index any$I, where I is a digit
(1-9). Beware, the TYPE any is a speudo type known within MAL only.

3.10 Type Resolution

Given the interpretative nature of many of the MAL instructions, when and where type
resolution takes place is a critical design issue. Performing it too late, i.e. at each instruction
call, leads to performance problems if we derive the same information over and over again.
However, many built-in operators have polymorphic typed signatures, so we cannot escape
it altogether.

Consider the small illustrative MAL program:

function sample(nme:str, val:any_1):bit;
c := 2 * 3;
b := bbp.bind(nme); #find a BAT
h := algebra.select(b,val,val);
t := aggr.count(h);
x := io.print(t);
y := io.print(val);

end sample;

The function definition is polymorphic typed on the 2nd argument, it becomes a concrete
type upon invocation. The system could attempt a type check, but quickly runs into
assumptions that generally do not hold. The first assignment can be type checked during
parsing and a symbolic optimizer could even evaluate the expression once. Looking up a
BAT in the buffer pool leads to an element :bat[ht,tt] where ht and tt are runtime dependent
types, which means that the selection operation can not be type-checked immediately. It
is an example of an embedded polypmorphic statement, which requires intervention of the
user/optimizer to make the type explicit before the type resolver becomes active. The
operation count can be checked, if it is given a BAT argument. This assumes that we can
infer that ’h’ is indeed a BAT, which requires assurance that algebra.select produces
one. However, there are no rules to avoid addition of new operators, or to differentiate
among different implementations based on the argument types. Since print(t) contains
an undetermined typed argument we should postpone typechecking as well. The last print
statement can be checked upon function invocation.

Life becomes really complex if the body contains a loop with variable types. For then we
also have to keep track of the original state of the function. Or alternatively, type checking
should consider the runtime stack rather than the function definition itself.

These examples give little room to achieve our prime objective, i.e. a fast and early
type resolution scheme. Any non-polymorphic function can be type checked and marked
type-safe upon completion. Type checking polymorphic functions are post-poned until a
concrete type instance is known. It leads to a clone, which can be type checked and is
entered into the symbol table.

Chapter 3: MonetDB Assembly Language (MAL) 59

3.10.1 User Defined Types

MonetDB supports an extensible type system to accomodate a wide spectrum of database
kernels and application needs. The type administration keeps track of their properties and
provides access to the underlying implementations.

MAL recognizes the definition of a new type by replacing the module keyword with
atom. Atoms definitions require special care, because their definition and properties should
be communicated with the kernel library. The commands defined in an atom block are
screened as of interest to the library.

MonetDB comes with the hardwired types bit, chr, sht, int, lng, oid, flt, dbl,
str and bat, the representation of a bat identifier. The kernel code has been optimized to
deal with these types efficiently, i.e. without unnecessary function call overheads.

A small collection of user-defined atom types is shipped with the sysem. They imple-
ment types considered essential for end-user applications, such as color, date, daytime,
time, timestamp, timezone, blob, and inet, url. They are implemented using the type
extension mechanism described below. As such, they provide examples for future exten-
sions. A concrete example is the ’blob’ datatype in the MonetDB atom module library(see
../modules/atoms/blob.mx)

3.10.2 Defining your own types

For the courageous at heart, you may enter the difficult world of extending the kernel library.
The easiest way is to derive the atom modules from one shipped in the source distributed.
More involved atomary types require a study of the documentation associated with the
atom structures (gdk atoms), because you have to develop a handful routines complying
with the signatures required in the kernel library. They are registered upon loading the
atom module.

3.11 Boxed Variables

Clients sessions often come with a global scope of variable settings. Access to these global
variables should be easy, but they should also provide protection against concurrent update
when the client wishes to perform parallel processing. Likewise, databases, query languages,
etc. may define constants and variables accessible, e.g., relational schemas, to a selected
user group.

The approach taken is to rely on persistent object spaces as pioniered in Lynda and
-later- JavaSpaces. They are called boxes in MonetDB and act as managed containers for
persistent variables.

Before a client program can interact with a box, it should open it, passing qualifying
authorization information and parameters to instruct the box-manager of the intended use.
A built-in box is implicitly opened when you request for its service.

At the end of a session, the box should be closed. Some box-managers may implement
a lease-scheme to automatically close interaction with a client when the lease runs out.
Likewise, the box can be notified when the last reference to a leased object ceases to exist.

A box can be extended with a new object using the function deposit(name) with name
a local variable. The default implementation silently accepts any new definition of the box.
If the variable was known already in the box, its value is overwritten.

Chapter 3: MonetDB Assembly Language (MAL) 60

A local copy of an object can be obtained using the pattern ’take(name,[param])’, where
name denotes the variable of interest. The type of the receiving variable should match the
one known for the object. Whether an actual copy is produced or a reference to a shared
object is returned is defined by the box manager.

The object is given back to the box manager calling ’release(name)’. It may update the
content of the repository accordingly, release locks, and move the value to persistent store.
Whatever the semantics of the box requires. [The default implementation is a no-op]

Finally, the object manager can be requested to ’discard(name)’ a variable completely.
The default implementation is to reclaim the space in the box.

Concurrency control, replication services, as well as access to remote stores may be dele-
gated to a box manager. Depending on the intended semantics, the box manager may keep
track of the clients holding links to this members, provide a traditional 2-phase locking
scheme, optimistic control, or check-out/check-in scheme. In all cases, these management
issues are transparant to the main thread (=client) of control, which operates on a tempo-
rary snapshot. For the time being we realize the managers as critical code sections, i.e. one
client is permitted access to the box space at a time.

Fo example, consider the client function:
function myfcn():void;

b:bat[:oid,:int] := bbp.take("mytable");
c:bat[:int,:str] := sql.take("person","age");
d:= intersect(b,c);
io.print(d);
u:str:= client.take(user);
io.print(u);
client.release(user);

end function;

The function binds to a copy from the local persistent BAT space, much like bat-names
are resolved in earlier MonetDB versions. The second statement uses an implementation of
take that searches a variable of interest using two string properties. It illustrates that a box
manager is free to extend/overload the predefined scheme, which is geared towards storing
MAL variables.

The result bat c is temporary and disappears upon garbage collection. The variable u
is looked up as the string object user.

Note that BATs b and c need be released at some point. In general this point in time
does not coincide with a computational boundary like a function return. During a session,
several bats may be taken out of the box, being processed, and only at the end of a session
being released. In this example, it means that the reference to b and c is lost at the end of
the function (due to garbarge collection) and that subsequent use requires another take()
call. The box manager bbp is notified of the implicit release and can take garbage collection
actions.

The box may be inspected at several times during a scenario run. The first time is when
the MAL program is type-checked for the box operations. Typechecking a take() function
is tricky. If the argument is a string literal, the box can be queried directly for the objects’
type. If found, its type is matched against the lhs variable. This strategy fails in the
situation when at runtime the object is subsequently replaced by another typed-instance in

Chapter 3: MonetDB Assembly Language (MAL) 61

the box. We assume this not to happen and the exceptions it raises a valuable advice to
reconsider the programming style.

The type indicator for the destination variable should be provided to proceed with proper
type checking. It can resolve overloaded function selection.

Inspection of the Box can be encoded using an iterator at the MAL layer and relying on
the functionality of the box. However, to improve introspection, we assume that all box im-
plementations provide a few rudimentary functions, called objects(arglist) and dir(arglist).
The function objects() produces a BAT with the object names, possibly limited to those
identified by the arglist.

The world of boxes has not been explored deeply yet. It is envisioned that it could play
a role to import/export different objects, e.g., introduce xml.take() which converts an XML
document to a BAT, jpeg.take() similer for an image.

Nesting boxes is possible. It provides a simple containment scheme between boxes, but
in general will interfere with the semantics of each box.

Each box has (should) have an access control list, which names the users having permis-
sion to read/write its content. The first one to create the box becomes the owner. He may
grant/revoke access to the box to users on a selective basis.

3.11.1 Session Box

Aside from box associated with the modules, a session box is created dynamically on behalf
of each client. Such boxes are considered private and require access by the user name (and
password). At the end of a session they are closed, which means that they are saved in
persistent store until the next session starts. For example:

function m():void;
box.open("client_name");
box.deposit("client_name","pi",3.417:flt);
f:flt := box.take("client_name","pi");
io.print(t);
box.close("client_name");

end function;

In the namespace it is placed subordinate to any space introduced by the system ad-
ministrator. It will contain global client data, e.g., user, language, database, port, and any
other session parameter. The boxes are all collected in the context of the database directory,
i.e. the directory <dbfarm>/box

3.11.2 Garbage Collection

The key objects managed by MonetDB are the persistent BATs, which call for an efficient
scheme to make them accessible for manipulation in the MAL procedures taking into account
a possibly hostile parallel access.

Most kernel routines produce BATs as a result, which will be referenced from the runtime
stack. They should be garbage collected as soon as deemed possible to free-up space. By
default, temporary results are garbage collected before returning from a MAL function.

Chapter 3: MonetDB Assembly Language (MAL) 62

3.11.3 Globale Environment

The top level interaction keeps a ’box’ with global variables, i.e. each MAL statement is
interpreted in an already initialized stack frame. This causes the following problems: 1)
how to get rid of global variables and 2) how to deal with variables that can take ’any’ type.
It is illustrated as follows:

f:= const.take("dbname");
io.print(f);

When executed in the context of a function, the answer will be simple [nil]. The reason
is that the expecteed type is not known at compilation time. The correct definition would
have been

f:str:= const.take("dbname");
io.print(f);

3.12 Property Management

Properties come in several classes, those linked with the symbol table and those linked with
the runtime environment. The former are determined once upon parsing or catalog lookup.
The runtime properties have two major subclasses, i.e. reflective and prescriptive. The
reflective properties merely provide a fast cache to information aggregated from the target.
Prescriptive properties communicate desirable states, leaving it to other system components
to reach this state at the cheapest cost possible. This multifacetted world makes it difficult
to come up with a concise model for dealing with properties. The approach taken here is
an experimental step into this direction.

This mal properties module provides a generic scheme to administer property sets and
a concise API to manage them. Its design is geared towards support of MAL optimizers,
which typically make multiple passes over a program to derive an alternative, better version.
Such code-transformations are aided by keeping track of derived information, e.g. the
expected size of a temporary result or the alignment property between BATs.

Properties capture part of the state of the system in the form of an simple term expression
(name, operator, constant). The property model assumes a namespace built around
Identifiers. The operator satisfy the syntax rules for MAL operators. Conditional operators
are quite common, e.g. the triple (count, <, 1000) can be used to denote a small table.

The property bearing objects in the MAL setting are variables (symbol table entries).
The direct relationship between instructions and a target variable, make it possible to keep
the instruction properties in the corresponding target variable.

Variables properties The variables can be extended at any time with a property set.
Properties have a scope identical to the scope of the corresponding variable. Ommision of
the operator and value turns it into a boolean valued property, whose default value is true.

b{count=1000,sorted}:= mymodule.action("table");
name{aligngroup=312} := bbp.take("person_name");
age{aligngroup=312} := bbp.take("person_age");

The example illustrates a mechanism to maintain alignment information. Such a prop-
erty is helpful for optimizers to pick an efficient algorithm.

MAL function signatures. A function signature contains a description of the objects it
is willing to accept and an indication of the expected result. The arguments can be tagged

Chapter 3: MonetDB Assembly Language (MAL) 63

with properties that ’should be obeyed, or implied’ by the actual arguments. It extends the
typing scheme used during compilation/optimization. Likewise, the return values can be
tagged with properties that ’at least’ exist upon function return.

function test(b:bat[:oid,:int]{count<1000}):bat[:oid,:int]{sorted}
#code block

end test

These properties are informative to optimizers. They can be enforced at runtime using
the operation optimizer.enforceRules() which injects calls into the program to check
them. An assertion error is raised if the property does not hold. The code snippet

z:= user.test(b);

is translated into the following code block;

mal.assert(b,"count","<",1000);
z:= user.test(b);
mal.assert(z,"sorted");

How to propagate properties? Property inspection and manipulation is strongly linked
with the operators of interest. Optimizers continuously inspect and update the properties,
while kernel operators should not be bothered with their existence. Property propagation
is strongly linked with the actual operator implementation. We examine a few recurring
cases.

V:=W; Both V and W should be type compatible, otherwise the compiler will already
complain.(Actually, it requires V.type()==W.type() and ~V.isaConstant()) But what hap-
pens with all others? What is the property propagation rule for the assignment? Several
cases can be distinguished:

I) W has a property P, unknown to V. II) V has a propery P, unknown to W. III) V
has property P, and W has property Q, P and Q are incompatible. IV) V and W have a
property P, but its value disaggrees.

case I). If the variable V was not initialized, we can simply copy or share the properties.
Copying might be too expensive, while shareing leads to managing the dependencies. case
II) It means that V is re-assigned a value, and depending on its type and properties we may
have to ’garbage collect/finalize’ it first. Alternatively, it could be interpreted as a property
that will hold after assignment which is not part of the right-hand side expression. case III)
if P and Q are type compatible, it means an update of the P value. Otherwise, it should
generates an exception. case IV) this calls for an update of V.P using the value of W.P.
How this should be done is property specific.

Overall, the policy would be to ’disgard’ all knowledge from V first and then copy the
properties from W.

[Try 1] V:= fcn(A,B,C) and signature fcn(A:int,B:int,C:int):int The signature provides
several handles to attach properties. Each formal parameter could come with a list of
’desirable/necessary’ properties. Likewise, the return values have a property set. This leads
to the extended signature function fcn(A:T,....,B:T): (C:T...D:T) where each Pi denotes a
property set. Properties P1..Pn can be used to select the proper function variant. At its
worst, several signatures of fcn() should be inspected at runtime to find one with matching
properties. To enable analysis and optimization, however, it should be clear that once the
function is finished, the properties Pk..Pm exist.

Chapter 3: MonetDB Assembly Language (MAL) 64

[Try 2] V:= fcn(A,B,C) and signature fcn(A:int,B:int,C:int):int The function is applicable
when a (simple conjuntive) predicate over the properties of the actual arguments holds. A
side-effect of execution of the function leads to an update of the property set associated
with the actual arguments. An example:

function fcn (A:int,B:bat[int,int],C:int):int
?

[Try 3] Organize property management by the processor involved, e.g. a cost-based
optimizer or a access control enforcer. For each optimizer we should then specify the
’symbolic’ effect of execution of instructions of interest. This means ’duplication’ of the
instruction set.

Can you drop properties? It seems possible, but since property operations occur before
actual execution there is no guarantee that they actually take place.

[case: how to handle sort(b:bat):bat as a means to propagate] [actually we need an
expression language to indicate the propety set, e.g. sort(b:bat):bat which first obtains the
properties of b and extends it with sorted. A nested structure emerge

Is it necessary to construct the property list intersection? Or do we need a user defined
function to consolidate property lists?]

Aside, it may be valuable to collect information on e.g. the execution time of functions
as a basis for future optimizations. Rather then cluttering the property section, it makes
sense to explicitly update this information in a catalog.

3.13 Properties at the MAL level

Aside from routines targeted as changing the MAL blocks, it should be possible to reason
about the properties within the language itself. This calls for gaining access and update.
For example, the following snippet shows how properties are used in a code block.

B := bbp.new(int,int);
I := properties.has(B,);
J := properties.get(B,);
print(J);

properties.set(B,,2315);
barrier properties.has(B,);
exit;

These example illustrate that the property manipulations are executed throug patterns,
which also accept a stack frame.

Sample problem with dropping properties:

B := bbp.new(int,int);
barrier tst:= randomChoice()

I := properties.drop(B,);
exit tst;

Chapter 3: MonetDB Assembly Language (MAL) 65

3.14 The cost model problem

An important issue for property management is to be able to pre-calculate a cost for a MAL
block. This calls for an cost model implementation that recognizes instructions of interest,
understands and can deal with the dataflow semantics, and

For example, selectivity estimations can be based on a histogram associated with a BAT.
The code for this could look like

B:= new(int,int);
properties.add(B,);
Z:= select(B,1,100);

Addition of a property may trigger its evaluation, provided enough information is avail-
able (e.g. catalog). The instruction triggers the calls properties.set(B,), properties.set(B,),
and properties.set(B,) once a property evaluation engine is ran against the code block. After
assignment to Z, we have to propagate properties properties.update(B,).

3.15 SQL case

To study the use of properties in the complete pipeline SQL-execution we contrive a small
SQL problem. The person table is sorted by name, the car table is unsorted.

create table person(name varchar not null,
address varchar);
create table car(name varchar,
model varchar,
milage int not null);
select distinct name, model, milage
from person, car
where car.name= person.name
and milage>60000;

3.16 Implementation rules

Properties can be associated with variables, MAL blocks, and MAL instructions. The
property list is initialized upon explicit request only, e.g. by the frontend parser, a box
manager, or as a triggered action.

Every property should come with a function that accepts a reference to the variable and
updates the property record. This function is activated either once or automatically upon
each selection.

3.17 Property ADT implementation

addProperty(O,P) adds property P to the list associated with O. If O represents a com-
pound structure, e.g. a BAT, we should indicate the component as well. For example,
addProperty(O,P,Ia,...Ib) introduces a property shared by the components Ia..Ib (indicated
with an integer index.

hasProperty(O,P) is a boolean function that merely checks existence hasnotProp-
erty(O,P) is the dual operation.

Chapter 3: MonetDB Assembly Language (MAL) 66

setProperty(O,P,V) changes the propety value to V. It may raise a PropertyUpdateVi-
olation exception when this can not be realized. Note, the property value itself is changed,
not the object referenced.

getProperty(O,P) retrieves the current value of a property. This may involve calling a
function or running a database query.

setPropertyAttribute(O,P,A) changes the behavior of the property. For example, the
attribute ’freeze’ will result in a call to the underlying function only once and to cache the
result for the remainder of the objects life time.

3.18 Predefined properties

The MAL language uses a few defaults, recognizable as properties
unsafe function has side effects.Default, unsafe=off
read data can be read but not updated
append data can be appended

Chapter 4: The MAL Interpreter 67

4 The MAL Interpreter

The MAL interpreter always works in the context of a single user session, which provides
for storage access to global variables and modules.

4.1 MAL API

The linkage between MAL interpreter and compiled C-routines is kept as simple as possible.
Basically we distinguish four kinds of calling conventions: CMDcall, FCNcall, FACcall, and
PATcall. The FCNcall indicates calling a MAL procedure, which leads to a recursive call
to the interpreter.

CMDcall initiates calling a linked function, passing pointers to the parameters and result
variable, i.e. f(ptr a0,..., ptr aN) The function returns a MAL-SUCCEED upon success and
a pointer to an exception string upon failure. Failure leads to raise-ing an exception in
the interpreter loop, by either looking up the relevant exception message in the module
administration or construction of a standard string.

The PATcall initiates a call which contains the MAL context, i.e. f(MalBlkPtr mb,
MalStkPtr stk, InstrPtr pci) The mb provides access to the code definitions. It is primarilly
used by routines intended to manipulate the code base itself, such as the optimizers. The
Mal stack frame pointer provides access to the values maintained. The arguments passed
are offsets into the stack frame rather than pointers to the actual value.

4.2 Exception handling

Calling a built-in or user-defined routine may lead to an error or a cached status message to
be dealt with in MAL. To improve error handling in MAL, an exception handling scheme
based on catch-exit blocks. The catch statement identifies a (string-valued) variable,
which carries the exception message from the originally failed routine or raise exception
assignment. During normal processing catch-exit blocks are simply skipped. Upon re-
ceiving an exception status from a function call, we set the exception variable and skip to
the first associated catch-exit block. MAL interpretation then continues until it reaches
the end of the block. If no exception variable was defined, we should abandon the function
alltogether searching for a catch block at a higher layer.

Exceptions raised within a linked-in function requires some care. First, the called proce-
dure does not know anything about the MAL interpreter context. Thus, we need to return
all relevant information upon leaving the linked library routine.

Second, exceptional cases can be handled deeply in the recursion, where they may also
be handled, i.e. by issueing an GDKerror message. The upper layers merely receive a
negative integer value to indicate occurrence of an error somewhere in the calling sequence.
We then have to also look into GDKerrbuf to see if there was an error raised deeply inside
the system.

The policy is to require all C-functions to return a string-pointer. Upon a successfull call,
it is a NULL string. Otherwise it contains an encoding of the exceptional state encountered.
This message starts with the exception identifer, followed by contextual details.

mal_export str catchKernelException(Client cntxt, str ret);

Chapter 4: The MAL Interpreter 68

str catchKernelException(Client cntxt, str ret){
str z;
if(cntxt->errbuf && cntxt->errbuf[0]) {
if (ret != MAL_SUCCEED){
z= (char*) GDKmalloc(strlen(ret)+strlen(cntxt->errbuf)+2);
strcpy(z,ret);
if (z[strlen(z)-1] != ’ n’) strcat(z," n");
strcat(z,cntxt->errbuf);
} else {
/* trap hidden (GDK) exception */
z= (char*) GDKmalloc(strlen("GDKerror:")+strlen(cntxt->errbuf)+2);
sprintf(z,"GDKerror:%s n",cntxt->errbuf);
}
cntxt->errbuf[0] = ’ 0’;
} else z = ret;
return z;
}

4.3 Garbage collection

Garbage collection is relatively straightforward, because most values are retained on the
stackframe of an interpreter call. However, two storage types and possibly user-defined
type garbage collector definitions require attention: BATs and strings.

A key issue is to deal with temporary BATs in an efficient way. References to bats in
the buffer pool may cause dangling references at the language level. This appears as soons
as your share a reference and delete the BAT from one angle. If not carefull, the dangling
pointer may subsequently be associated with another BAT

All string values are private to the VALrecord, which means they have to be freed
explicitly before a MAL function returns. The first step is to always safe the destination
variable before a function call is made.

All operations are responsible to properly set the reference count of the BATs being
produced or destroyed. The libraries should not leave the physical reference count being
set. This is only allowed during the execution of a GDK operation. All references should
be logical.

4.4 MAL runtime stack

The runtime context of a MAL procedure is allocated on the runtime stack of the correspond-
ing interpreter. Access to the elements in the stack are through index offsets, determined
during MAL procedure parsing.

The scope administration for MAL procedures is decoupled from their actual runtime
behavior. This means we are more relaxed on space allocation, because the size is deter-
mined by the number of MAL procedure definitions instead of the runtime calling behavior.
(See mal interpreter for details on value stack management)

The variable names and types are kept in the stack to ease debugging. The underlying
string value need not be garbage collected. Runtime storage for variables are allocated on

Chapter 4: The MAL Interpreter 69

the stack of the interpreter thread. The physical stack is often limited in size, which calls
for safeguarding their value and garbage collection before returning. A malicious procedure
or implementation will lead to memory leakage.

A system command (linked C-routine) may be interested in extending the stack. This
is precluded, because it could interfere with the recursive calling sequence of procedures.
To accommodate the (rare) case, the routine should issue an exception to be handled by
the interpreter before retrying. All other errors are turned into an exception, followed by
continuing at the exception handling block of the MAL procedure.

Chapter 5: The MAL Optimizer 70

5 The MAL Optimizer

One of the prime reasons to design the MAL intermediate language is to have a high-level
description for database queries, which is easy to generate by a front-end compiler and easy
to decode, optimize and interpret.

An optimizer needs several mechanisms to be effective. It should be able to perform
a symbolic evaluation of a code fragment and collect the result in properties for further
decision making. The prototypical case is where an optimizer estimates the result size of a
selection.

Another major issue is to be able to generate and explore a space of alternative evaluation
plans. This exploration may take place up front, but can also be ran at runtime for query
fragments.

5.1 The Optimizer Landscape

A query optimizer is often a large and complex piece of code, which enumerates alternative
evaluation plans from which ’the best’ plan is selected for evaluation. Limited progress has
been made sofar to decompose the optimizer into (orthogonal) components, because it is
a common believe in research that a holistic view on the problem is a prerequisite to find
the best plan. Conversely, commercial optimizers use a cost-model driven approach, which
explores part of the space using a limited (up to 300) rewriting rules.

Our hypothesis is that query optimization should be realized with a collection of query
optimizer transformers (QOT), each dedicated to a specific task. Furthermore, they are
assembled in scenarios to support specific application domains or achieve a desired behavior.
Such scenarios are selected on a session basis, a query basis, or dynamically at runtime;
they are part of the query plan.

The query transformer list below is under consideration for development. For each we
consider its goal, approach, and expected impact. Moreover, the minimal prerequisites
identify the essential optimizers that should have done their work already. For example, it
doesn’t make sense to perform a static evaluation unless you have already propagated the
constants using Alias Removal.

Constant expressions Goal: to remove scalar expressions which need be evaluated once
during the query lifetime. Rationale: static expressions appear when variables used denote
literal constants (e.g. 1+1), when catalog information can be merged with the plan (e.g.
max(B.salary)), when session variables are used which are initialized once (e.g. user()).
Early evaluation aids subsequent optimization. Approach: inspect all instructions to locate
static expressions. Whether they should be removed depends on the expected re-use, which
in most cases call for an explicit request upon query registration to do so. The result of a
static evaluation provides a ground for alias removal. Impact: relevant for stored queries
(MAL functions) Prereq: alias removal, common terms

Relational Expression Optimizer Goal: to evaluate a relational plan using properties of
BATs, such as being empty or forming an aligned group. These optimizations assume that
the code generator can detect properties while compiling e.g. an SQL query. Impact: high
Prereq:

Alias Removal Goal: to reduce the number of variables referenceing the same value,
thereby reducing the analysis complexity. Rationale: query transformations often result

Chapter 5: The MAL Optimizer 71

in replacing the right-hand side expression with a result variable. This pollutes the code
block with simple assignments e.g. V:=T. Within the descendant flow the occurrence of
V could be replaced by T, provided V is never assigned a new value. Approach: literal
constants within a MAL block are already recognized and replaced by a single variable.
Impact: medium.

Common Term Optimizer Goal: to reduce the amount of work by avoiding calculation of
the same operation twice. Rationale: to simplify code generation for front-ends, they do not
have to remember the subexpressions already evaluated. It is much easier to detect at the
MAL level. Approach: simply walk through the instruction sequence and locate identical
patterns. (Enhance is with semantic equivalent instructions) Impact: High Prereq: Alias
Removal

Dead Code Removal Goal: to remove all instructions whose result is not used Rationale:
due to sloppy coding or alternative execution paths dead code may appear. Als XML
Pathfinder is expected to produce a large number of simple assignments. Approach: Every
instruction should produce a value used somewhere else. Impact: low

Heuristic Rule Rewrites Goal: to reduce the volume as quick as possible. Rationale:
most queries are focussed on a small part of the database. To avoid carrying too many
intermediates, the selection should be performed as early as possible in the process. This
assumes that selectivity factors are known upfront, which in turn depends on histogram of
the value distribution. Approach: locate selections and push them back/forth through the
flow graph. Impact: high

Join Path Optimizer Goal: to reduce the volume produced by a join sequence Rationale:
join paths are potentially expensive operations. Ideally the join path is evaluated starting
at the smallest component, so as to reduce the size of the intermediate results. Approach:
to successfully reduce the volume we need to estimate their processing cost. This calls for
statistics over the value distribution, in particular, correlation histograms. If statistics are
not available upfront, we have to restore to an incremental algorithm, which decides on the
steps using the size of the relations. Impact: high

Operator Sort Goal: to sort the dataflow graph in such a way as to reduce the cost,
or to assure locality of access for operands. Rationale: A simple optimizer is to order the
instructions for execution by permutation of the query components Approach: Impact:

Singleton Set Goal: to replace sets that are known to produce precisely one tuple.
Rationale: Singleton sets can be represented by value pairs in the MAL program, which
reduces to a scalar expression. Approach: Identify a set variable for replacement. Impact:

Range Propagation Goal: look for constant ranges in select statements and propagate
them through the code. Rationale: partitioned tables and views may give rise to expressions
that contain multiple selections over the same BAT. If their arguments are constant, the
result of such selects can sometimes be predicted, or the multiple selections can be cascaded
into a single operation. Impact: high, should be followed by alias removal and dead code
removal

Result Cacher Goal: to reduce the processing cost by keeping track of expensive to
compute intermediate results Rationale: Approach: result caching becomes active after an
instruction has been evaluated. The result can be cached as long as its underlying operands
remain unchanged. Result caching can be made transparent to the user, but affects the
other quer optimizers. Impact: high

Chapter 5: The MAL Optimizer 72

Vector Execution Goal: to rewrite a query to use a cache-optimal vector implementation
Rationale: processing in the cache is by far the best you can get. However, the operands may
far exceed the cache size and should be broken into pieces followed by a staged execution of
the fragments involved. Approach: replace the query plan with fragment streamers Impact:

Staged Execution Goal: to split a query plan into a number of steps, such that the
first response set is delivered as quickly as possible. The remainder is only produced upon
request. Rationale: interactive queries call for quick response and an indication of the
processing time involved to run it too completion. Approach: staged execution can be
realized using a fragmentation scheme over the database, e.g. each table is replaced by
a union of fragments. This fragmentation could be determined upfront by the user or is
derived from the query and database statistics. impact: high

Code Parallizer Goal: to exploit parallel IO and cpu processing in both SMP and MPP
settings. Rationale: throwing more resources to solve a complex query helps, provided it is
easy to determine that parallel processing recovers the administrative overhead Approach:
every flow path segment can be handled by an independent process thread. Impact: high

Query Evaluation Maps Goal: to avoid touching any tuple that is not relevant for
answering a query. Rationale: the majority of work in solving a query is to disgard tuples of
no interest and to find correlated tuples through join conditions. Ideally, the database learns
these properties over time and re-organizes (or builts a map) to replace disgarding by map
lookup. Approach: piggyback selection and joins as database fragmentation instructions
Impact: high

MAL Compiler (tactics) Goal: to avoid interpretation of functional expressions Ra-
tionale: interpretation of arithmetic expressions with an interpreter is always expensive.
Replacing a complex arithmetic expressin with a simple dynamically compiled C-functions
often pays off. Especially for cached (MAL) queries Approach: Impact: high

Dynamic Query Scheduler (tactics) Goal: to organize the work in a way so as to optimize
resource usage Rationale: straight interpretation of a query plan may not lead to the best
use of the underlying resources. For example, the content of the runtime cache may provide
an opportunity to safe time by accessing a cached source Approach: query scheduling is
the last step before a relation algebra interpreter takes over control. The scheduling step
involves a re-ordering of the instructions within the boundaries imposed by the flow graph.
impact: medium

Aggregate Groups Goal: to reduce the cost of computing aggregate expressions over
times Rationale: many of our applications call for calculation of aggregates over dynami-
cally defined groupings. They call for lengtly scans and it pays to piggyback all aggregate
calculates, leaving their result in the cache for later consumption (eg the optimizers) Ap-
proach: Impact: High

Data Cube optimizer Goal: to recognize data cube operations Rationale: Approach:
Impact:

Demand Driven Interpreter (tactics) Goal: to use the best interpreter and libraries
geared at the task at hand Rationale: Interpretation of a query plan can be based on
different computational models. A demand driven interpretation starts at the intended
output and ’walks’ backward through the flow graph to collect the pieces, possibly in a
pipelined fashion. (Vulcano model) Approach: merely calls for a different implementation
of the core operators Impact: high

Chapter 5: The MAL Optimizer 73

Iterator Strength Reduction Goal: to reduce the cost of iterator execution by moving
instructions out of the loop. Rationale: although iteration at the MAL level should be
avoided due to the inherent low performance compared to built-in operators, it is not
forbidden. In that case we should confine the iterator block to the minimal work needed.
Approach: inspect the flowgraph for each iterator and move instructions around. Impact:
low

Accumulator Evaluation Goal: to replace operators with cheaper ones. Rationale: based
on the actual state of the computation and the richness of the supporting libraries there
may exists alternative routes to solve a query. Approach: Operator rewriting depends on
properties. No general technique. The first implementation looks at calculator expressions
such as they appear frequently in the RAM compiler. Impact: high Prerequisite: should be
called after common term optimizer to avoid clashes. Status: Used in the SQL optimizer.

Code Inliner Goal: to reduce the calling depth of the interpreter and to obtain a
better starting point for code squeezing Rationale: substitution of code blocks (or macro
expansion) leads to longer linear code sequences. This provides opportunities for squeezing.
Moreover, at runtime building and managing a stackframe is rather expensive. This should
be avoided for functions called repeatedly. Impact: medium Status: Used in the SQL
optimizer to handle SQL functions.

Code Outliner Goal: to reduce the program size by replacing a group with a single
instruction Rationale: inverse macro expansion leads to shorter linear code sequences. This
provides opportunities for less interpreter overhead, and to optimize complex, but repetative
instruction sequences with a single hardwired call Approach: called explicitly to outline a
module (or symbol) Impact: medium

Garbage Collector Goal: to release resources as quickly as possible Rationale: BATs
referenced from a MAL program keep resources locked. Approach: In cooperation with a
resource scheduler we should identify those that can be released quickly. It requires a forced
gargabe collection call at the end of the BAT’s lifespan. Impact: large Status: Implemented.
Algorithm based on end-of-life-span analysis.

Foreign Key replacements Goal: to improve multi-attribute joins over foreign key con-
straints Rationale: the code produced by the SQL frontend involves foreign key constraints,
which provides many opportunities for speedy code using a join index. Impact: large Status:
Implemented in the SQL strategic optimizer.

5.1.1 Optimizer Dependencies

The optimizers are highly targeted to a particular problem. Aside from the resources
available to invest in plan optimization, optimizers are partly dependent and may interfere.

To aid selection of the components of interest, we have grouped them in a preferred
order of deployment.
Group A: Code Inliner.

Constant Expression Evaluator.
Relational Expression Evaluator.
Strength Reduction.

Group B: Common Term Optimizer.
Query Evaluation Maps.

Chapter 5: The MAL Optimizer 74

Group C: Join Path Optimizer.
Ranges Propagation.
Operator Cost Reduction.
Operator Sort.
Foreign Key handling.
Aggregate Groups.
Data Cube optimizer.
Heuristic Rule Rewrite.

group D: Code Parallizer.
Accumulator Evaluations.
Result Cacher.
Replication Manager.

group E: MAL Compiler.
Dynamic Query Scheduler.
Vector Execution.
Staged Execution.

group F: Alias Removal.
Dead Code Removal.
Garbage Collector.

The interaction also excludes combinations. For example, the Accumulator should be
used after the Partition optimizer.

5.1.2 Optimizer Building Blocks

Some instructions are independent of the execution context. In particular, expressions over
side-effect free functions with constant parameters could be evaluated before the program
block is considered further.

A major task for an optimizer is to select instruction (sequences) which can and should
be replaced with cheaper ones. The cost model underlying this decision depends on the
processing stage and the overall objective. For example, based on a symbolic analysis their
may exist better implementations within the interpreter to perform the job (e.g. hashjoin
vs mergejoin). Alternative, expensive intermediates may be cached for later use.

Plan enumeration is often implemented as a Memo structure, which designates alterna-
tive sub-plans based on a cost metric. Perhaps we can combine these memo structures into
a large table for all possible combinations encountered for a user.

The MAL language does not imply a specific optimizer to be used. Its programs are
merely a sequence of specifications, which is interpreted by an engine specific to a given
task. Activation of the engine is controlled by a scenario, which currently includes two
hooks for optimization; a strategic optimizer and a tactical optimizer. Both engines take
a MAL program and produce a (new/modified) MAL program for execution by the lower
layers.

MAL programs end-up in the symbol table linked to a user session. An optimizer has the
freedom to change the code, provided it is known that the plan derived is invariant to changes
in the environment. All others lead to alternative plans, which should be collected as a trail

Chapter 5: The MAL Optimizer 75

of MAL program blocks. These trails can be inspected for a posteriori analysis, at least in
terms of some statistics on the properties of the MAL program structures automatically.
Alternatively, the trail may be pruned and re-optimized when appropriate from changes in
the environment.

The rule applied for all optimizers is to not-return before checking the state of the MAL
program, and to assure the dataflow and variable scopes are properly set. It costs some
performance, but the difficulties that arise from optimizer interference are very hard to
debug. One of the easiest pitfalls is to derive an optimized version of a MAL function while
it is already referenced by or when polymorphic typechecking is required afterwards.

5.1.3 Building Your Own Optimizer

Implementation of your own MAL-MAL optimizer can best be started from refinement of
one of the examples included in the code base. Beware that only those used in the critical
path of SQL execution are thorouhly tested. The others are developed up to the point that
the concept and approach can be demonstrated.

The general structure of most optimizers is to actively copy a MAL block into a new
program structure. At each step we determine the action taken, e.g. replace the instruction
or inject instructions to achieve the desired goal.

A tally on major events should be retained, because it gives valuable insight in the
effectiveness of your optimizer. The effects of all optimizers is collected in a system catalog.

Each optimizer ends with a strong defense line, optimizerCheck() It performs a com-
plete type and data flow analysis before returning. Moreover, if you are in debug mode,
it will keep a copy of the plan produced for inspection. Studying the differences between
optimizer steps provide valuable information to improve your code.

The functionality of the optimizer should be clearly delineated. The guiding policy is
that it is always safe to not apply an optimizer step. This helps to keep the optimizers as
independent as possible.

It really helps if you start with a few tiny examples to test your optimizer. They should
be added to the Tests directory and administered in Tests/All.

Breaking up the optimizer into different components and grouping them together in
arbitrary sequences calls for careful programming.

One of the major hurdles is to test interference of the optimizer. The test set is a good
starting point, but does not garantee that all cases have been covered.

In principle, any subset of optimizers should work flawlessly. With a few tens of opti-
mizers this amounts to potential millions of runs. Adherence to a partial order reduces the
problem, but still is likely to be too resource consumptive to test continously.

5.1.4 Optimizer framework

The large number of query transformers calls for a flexible scheme for the deploy them.
The approach taken is to make all optimizers visible at the language level as a signature
optimizer.F() and optimizer.F(mod,fcn). The latter designates a target function to be
inspected by the optimizer F(). Then (semantic) optimizer merely inspects a MAL block
for their occurrences and activitates it.

Chapter 5: The MAL Optimizer 76

The optimizer routines have access to the client context, the MAL block, and the program
counter where the optimizer call was found. Each optimizer should remove itself from the
MAL block.

The optimizer repeatedly runs through the program until no optimizer call is found.
Note, all optimizer instructions are executed only once. This means that the instruction

can be removed from further consideration. However, in the case that a designated function
is selected for optimization (e.g., commonTerms(user,qry)) the pc is assumed 0. The first
instruction always denotes the signature and can not be removed.

To safeguard against incomplete optimizer implementations it is advisable to perform
an optimizerCheck at the end. It takes as arguments the number of optimizer actions taken
and the total cpu time spent. The body performs a full flow and type check and re-initializes
the lifespan administration. In debugging mode also a copy of the new block is retained for
inspection.

5.1.5 Lifespan analysis

Optimizers may be interested in the characteristic of the barrier blocks for making a de-
cision. The variables have a lifespan in the code blocks, denoted by properties beginLifes-
pan,endLifespan. The beginLifespan denotes the intruction where it receives its first value,
the endLifespan the last instruction in which it was used as operand or target.

If, however, the last use lies within a BARRIER block, we can not be sure about its end
of life status, because a block redo may implictly revive it. For these situations we associate
the endLifespan with the block exit.

In many cases, we have to determine if the lifespan interferes with a optimization decision
being prepared. The lifespan is calculated once at the beginning of the optimizer sequence.
It should either be maintained to reflect the most accurate situation while optimizing the
code base. In particular, it means that any move/remove/addition of a MAL instruction
calls for either a recalculation or further propagation. Unclear what will be the best strategy.
For the time being we just recalc.

See is all arguments mentioned in the instruction at point pc are still visible at instruction
qc and have not been updated in the mean time. Take into account that variables may be
declared inside a block. This can be calculated using the BARRIER/CATCH and EXIT
pairs.

The safety property should be relatively easy to determine for each MAL function. This
calls for accessing the function MAL block and to inspect the arguments of the signature.

Any instruction may block identification of a common subexpression. It suffices to
stumble upon an unsafe function whose parameter lists has a non-empty intersection with
the targeted instruction. To illustrate, consider the sequence

L1 := f(A,B,C);
...
G1 := g(D,E,F);
...
l2:= f(A,B,C);
...
L2:= h()

Chapter 5: The MAL Optimizer 77

The instruction G1:=g(D,E,F) is blocking if G1 is an alias for {A,B,C}. Alternatively,
function g() may be unsafe and {D,E,F} has a non-empty intersection with {A,B,C}. An
alias can only be used later on for readonly (and not be used for a function with side effects).

5.1.6 Flow analysis

In many optimization rules, the data flow dependency between statements is of crucial
importance. The MAL language encodes a multi-source, multi-sink dataflow network. Op-
timizers typically extract part of the workflow and use the language properties to enumerate
semantic equivalent solutions, which under a given cost model turns out to result in better
performance.

The flow graph plays a crucial role in many optimization steps. It is unclear as yet what
primitives and what storage structure is most adequate. For the time being we introduce
the operations needed and evaluate them directly against the program

For each variable we should determine its scope of stability. End-points in the flow graph
are illustrative as dead-code, that do not produce persistent data. It can be removed when
you know there are no side-effect.

Side-effect free evaluation is a property that should be known upfront. For the time
being, we assume it for all operations known to the system. The property "unsafe" is
reserved to identify cases where this does not hold. Typically, a bun-insert operation is
unsafe, as it changes one of the parameters.

5.2 Optimizer Toolkit

In this section, we introduce the collection of MAL optimizers included in the code base.
The tool kit is incrementally built, triggered by experimentation and curiousity. Several
optimizers require further development to cope with the many features making up the
MonetDB system. Such limitations on the implementation are indicated where appropriate.

Experience shows that construction and debugging of a front-end specific optimizer is
simplified when you retain information on the origin of the MAL code produced as long as
possible. For example, the snippet sql.insert(col, 12@0, "hello") can be the target
of simple SQL rewrites using the module name as the discriminator.

Pipeline validation. The pipelines used to optimize MAL programs contain dependencies.
For example, it does not make much sense to call the deadcode optimizer too early in the
pipeline, although it is not an error. Moreover, some optimizers are merely examples of the
direction to take, others are critical for proper functioning for e.g. SQL.

5.2.1 Access mode optimization

The routine optimizer.accessmode() reduces the number of read/write mode changes of
variables to a minimum. Especially setting a BAT to write mode is expensive, because it
often implies creation of a private copy first.

A full implementation is delayed until really needed.

5.2.2 Accumulator Evaluations

Bulk arithmetic calculations are pretty expensive, because new bats are created for each
expression. This memory hunger can be reduced by detecting opportunities for accummu-

Chapter 5: The MAL Optimizer 78

lator processing, i.e. where a (temporary) variable is overwritten. For example, consider
the program snippet

t3:= batcalc.*(64,t2);
t4:= batcalc,+(t1,t3);
optimizer.accumulators();

If variable t2 is a temporary variable and not used any further in the program block, we
can re-use its storage space and propagate its alias through the remainder of the code.

batcalc.*(t2,64,t2);
t4:= batcalc.+(t2,t1,t2);

The implementation is straight forward. It only deals with the arithmetic operations
available in batcalc right now. This set will be gradually be extended. The key decision
is to determine whether we may overwrite any of the arguments. This is hard to detect
at compile time, e.g. the argument may be the result of a binding operation or represent
a view over a persistent BAT. Therefore, the compiler injects the call algebra.reuse(),
which avoids overwriting persistent BATs by taking a copy.

5.2.3 Alias Removal

The routine optimizer.aliasRemoval() walks through the program looking for simple
assignment statements, e.g. V:=W. It replaces all subsequent occurrences of V by W,
provided V is assigned a value once and W does not change in the remainder of the code.
Special care should be taken for iterator blocks as illustrated in the case below:

i:=0;
b:= "done";

barrier go:= true;
c:=i+1;
d:="step";
v:=d;
io.print(v);
i:=c;

redo go:= i<2;
exit go;

io.print(b);
optimizer.aliasRemoval();

The constant strings are propagated to the print() routine, while the initial assigment
i:=0 should be retained. The code block becomes:

i:=0;
barrier go:= true;

c:=i+1;
io.print("step");
i:=c;

redo go:= i<2;
exit go;

io.print("done");

A special case is backward propagation of constants. The following snippet is the result
of the JITO emptyset. It can be further reduced to avoid useless assignments.

Chapter 5: The MAL Optimizer 79

_53 := sql.bind("sys","_tables","type",0);
(_54,_56,_58,_60) := bat.partition(_53);
_53 := nil;
_67 := _54;
_54 := nil;
_75 := _67;
_67 := nil;
_83 := _75;
_75 := nil;

5.2.4 Code Factorization

In most real-life situations queries are repeatedly called with only slight changes in their
parameters. This situation can be captured by the query compilers by keeping a cache of
recent query plans. In MonetDB context such queries are represented as parameterized
MAL programs.

To further optimize the cached functions it might help to split the query plan into two
sections. One section with those actions that do not depend on the arguments given and
another section that contains the heart of the query using all information. Such a program
can be represented by a MAL factory, which is a re-entrend query plan.

An example of how factorize changes the code is shown below:

function test(s:str):lng;
b:= bat.new(:int,:str);
bat.insert(b,1,"hello");
z:= algebra.select(b,s,s);
i:= aggr.count(z);
return i;

end test;
optimizer.factorize("user","test");

which translates into the following block:

factory user.test(s:str):lng;
b := bat.new(:int,:str);
bat.insert(b,1,"hello");

barrier always := true;
z := algebra.select(b,s,s);
i := aggr.count(z);
yield i;
redo always;

exit always;
end test;

The factorizer included is a prototype implementation of MAL factorization. The ap-
proach taken is to split the program into two pieces and wrap it as a MAL factory. The
optimization assumes that the database is not changed on tables accessed only once during
the factory lifetime. Such changes should be detected from the outside and followed by
re-starting the factory.

Chapter 5: The MAL Optimizer 80

A refined scheme where the user can identify the ’frozen’ parameters is left for the future.
As the mapping of a query to any of the possible available factories to deal with the request.
For the time being we simple reorganize the plan for all parameters

The factorize operation interferes with optimizer.expressionAccumulation() be-
cause that may overwrite the arguments. For the time being, this is captured in a local
routine.

5.2.5 Coercion Removal

A simple optimizer that removes coercions that are not needed. They may result from a
sloppy code-generator or function call resolution decision. For example:

v:= calc.int(23);

becomes a single assignment without function call.

The primary role is a small illustration of coding an optimizer algorithm.

5.2.6 Common Subexpression Elimination

Common subexpression elimination merely involves a scan through the program block to
detect re-curring statements. The key problem to be addressed is to make sure that the
parameters involved in the repeatative instruction are invariant.

The analysis of optimizer.commonTerms() is rather crude. All functions with possible
side-effects on their arguments should have been marked as ’unsafe’. Their use within a
MAL block breaks the dataflow graph for all objects involved (BATs, everything kept in
boxes).

The common subexpression optimizer locates backwards the identical instructions. It
stops as soon as it has found an identical one. Before we can replace the expression with
the variable(s) of the previous one, we should assure that we haven;t passed a non-empty
barrier block.

b:= bat.new(:int,:int);
c:= bat.new(:int,:int);
d:= algebra.select(b,0,100);
e:= algebra.select(b,0,100);
k1:= 24;
k2:= 27;
l:= k1+k2;
l2:= k1+k2;
l3:= l2+k1;
optimizer.commonTerms();

is translated into the code block where the first two instructions are not common, because
they have side effects.

b := bat.new(:int,:int);
c := bat.new(:int,:int);
d := algebra.select(b,0,100);
e := d;
l := calc.+(24,27);
l3 := calc.+(l,24);

Chapter 5: The MAL Optimizer 81

5.2.7 Constant Expression Evaluation

Expressions produced by compilers involving only constant arguments can be evaluated
once. It is particular relevant in functions that are repeatably called. One time queries
would not benefit from this extra step.

Consider the following snippet, which contains recursive use of constant arguments
a:= 1+1; io.print(a);
b:= 2; io.print(b);
c:= 3*b; io.print(c);
d:= calc.flt(c);io.print(d);
e:= mmath.sin(d);io.print(e);
optimizer.aliasRemoval();
optimizer.evaluate();

The code produced by the optimizer would be
io.print(2);
io.print(2);
io.print(6);
io.print(6);
io.print(-0.279415488);

Likewise we attempt to catch barrier blocks based on constants.

5.2.8 Costmodel Approach

Cost models form the basis for many optimization decisions. The cost parameters are
typically the size of the (intermediate) results and response time. Alternatively, they are
running aggregates, e.g. max memory and total execution time, obtained from a simulated
run. The current implementation contains a framework and an example for building your
own cost-based optimized.

The optimizer.costModel() works its way through a MAL program in search for
relational operators and estimates their result size. The estimated size is left behind as the
property rows.

r{rows=100} := bat.new(:oid,:int);
s{rows=1000}:= bat.new(:oid,:int);
rs:= algebra.select(s,1,1);
rr:= bat.reverse(r);
j:= algebra.join(rs,rr);
optimizer.costModel();

changes the properties of the instructions as follows:
r{rows=100} := bat.new(:oid,:int);
s{rows=1000} := bat.new(:oid,:int);
rs{rows=501} := algebra.select(s,1,1);
rr{rows=100} := bat.reverse(r);
j{rows=100} := algebra.join(rs,rr);

The cost estimation does not use any statistics on the actual data distribution yet. It
relies on the rows property provided by the front-end or other optimizers. It just applies a

Chapter 5: The MAL Optimizer 82

few heuristic cost estimators. However, it ensures that empty results are only tagged with
rows=0 if the estimate is accurate, otherwise it assumes at least one result row. This
property makes it possible to safely pass the result of the cost estimation to the emptySet
optimizer for code reduction.

5.2.9 The dataflow optimizer

MAL programs are largely logical descriptions of an execution plan. At least as it concerns
side-effect free operations. For these sub-plans the order of execution needs not to be a
priori fixed and a dataflow driven evaluation is possible. Even using multiple cores to work
their way through the dataflow graph.

The dataflow optimizer analyses the code and wraps all instructions eligible for dataflow
driven execution with a guarded block. Ofcourse, this is only necessary if you can upfront
determine there are multiple threads of execution possible.

Upon execution, the interpreter instantiates multiple threads based on an the number of
processor cores available. Subsequently, the eligible instructions are queued and consumed
by the interpreter threads.

Dataflow blocks may not be nested. Therefore, any dataflow block produced for inlined
code is removed first.

Initial experiments on e.g. the RDF benchmark showed a speed up of 20\% on average,
with a peak of a factor 2 for individual queries. The main reason for this limited gain stems
from the little opportunities for parallel execution in the SQL code plans

5.2.10 Dead Code Removal

Dead code fragments are recognized by assignments to variables whose value is not consumed
any more. It can be detected by marking all variables used as arguments as being relevant.
In parallel, we built a list of instructions that should appear in the final result. The new
code block is than built in one scan, discarding the superflous instructions.

Instructions that produce side effects to the environment, e.g., printing and BAT up-
dates, should be taken into account. Such (possibly recursive) functions should be marked
with a property (unsafe). For now we recognize a few important ones Likewise, instructions
marked as control flow instructions should be retained.

An illustrative example is the following MAL snippet:
V7 := bat.new(:oid,:int);
V10 := bat.new(:int,:oid);
V16 := algebra.markH(V7);
V17 := algebra.join(V16,V7);
V19 := bat.new(:oid,:int);
V22 := bat.new(:oid,:int);
V23 := algebra.join(V16,V22);
io.print("done");
optimizer.deadCodeRemoval();

The dead code removal trims this program to the following short block:
io.print("done");

A refinement of the dead code comes from using arguments that ceased to exist due to
actions taken by an optimizer. For example, in the snippet below the pushranges optimizer

Chapter 5: The MAL Optimizer 83

may conclude that variable V31 becomes empty and simply injects a ’dead’ variable by
dropping the assignment statement. This makes other code dead as well.

V30 := algebra.select(V7, 10,100);
V31 := algebra.select(V30,-1,5);
V32 := aggr.sum(V31);
io.print(V32);

[implementation pending]

5.2.11 Emptyset Reduction

One of the key decisions during MAL optimization is to estimate the size of the BATs
produced and consumed. Two cases are of interest for symbolic processing. Namely, when
a BAT is known to contain no tuples and those that have precisely one element. Such
information may come from application domain knowledge or as a side effect from symbolic
evaluation. It is associated with the program under inspection as properties.

The empty set property is used by the reduction algorithm presented here. Any empty
set is propagated through the program to arrive at a smaller and therefore faster evaluation.

For example, consider the following MAL test:

V1 := bat.new(:oid,:int);
V7 := bat.new(:oid,:int);
V10{rows=0} := bat.new(:int,:oid);
V11 := bat.reverse(V10);
V12 := algebra.kdifference(V7,V11);
V16 := algebra.markH(V12);
V17 := algebra.join(V16,V7);
bat.append(V1,V17);

optimizer.costModel();
optimizer.emptySet();

Calling the optimizers replaces this program by the following code snippet.

V1 := bat.new(:oid,:int);
V7 := bat.new(:oid,:int);
V10{rows=0} := bat.new(:int,:oid);
V11{rows=0} := bat.new(:oid,:int);
V12 := V7;
V16 := algebra.markH(V12);
V17 := algebra.join(V16,V7);
bat.append(V1,V17);

This block can be further optimized using alias propagation and dead code removal. The
final block becomes:

V1 := bat.new(:oid,:int);
V7 := bat.new(:oid,:int);
V16 := algebra.markH(V7);
V17 := algebra.join(V16,V7);
bat.append(V1,V17);

Chapter 5: The MAL Optimizer 84

During empty set propagation, new candidates may appear. For example, taking the
intersection with an empty set creates a target variable that is empty too. It becomes an
immediate target for optimization. The current implementation is conservative. A limited
set of instructions is considered. Any addition to the MonetDB instruction set would call
for assessment on their effect.

5.2.12 SQL specifics

The bind operations of SQL requires special care, because they refer to containers that
might initially be empty, but aren’t upon a second call. This calls for a defensive approach,
where a constraint check is left behind to detect a plan whose conditions are not met
anymore. Of course, we can drop the constraint if we know that a plan is used onlye once
(and not recursively). This can be marked by the SQL compiler, who is in control over the
query cache.

5.2.13 Garbage Collection

Garbage collection of temporary variables, such as strings and BATs, takes place upon
returning from a function call. Especially for BATs this may keep sizable resources locked
longer than strictly necessary. Although the programmer can influence their lifespan by
assignment of the nil, thereby triggering the garbage collector, it is more appropriate to
rely on an optimizer to inject these statements. For, it keeps the program smaller and a
better target for code-optimizations.

The operation optimizer.garbageCollector() removes all BAT references that are
at their end of life to make room for new ones. It is typically called as one of the last
optimizer steps. A snippet of a the effect of the garbage collector:

t1 := bat.new(:oid,:int);
t2 := array.grid(132000,8,1,0);
t3 := array.grid(1,100,10560,0);
t4 := array.grid(1,100,10560,0,8);
t5 := batcalc.+(t2,t4);
t6 := batcalc.oid(t5);
t7 := algebra.join(t6,t1);
optimizer.garbageCollector();

is translated into the following code block:

t1 := bat.new(:oid,:int);
t2 := array.grid(132000,8,1,0);
t3 := array.grid(1,100,10560,0);
t4 := array.grid(1,100,10560,0,8);
t5 := batcalc.+(t2,t4);
bat.setGarbage(t2);
bat.setGarbage(t4);
t6 := batcalc.oid(t5);
bat.setGarbage(t5);
t7 := algebra.join(t6,t1);
bat.setGarbage(t6);
bat.setGarbage(t1);

Chapter 5: The MAL Optimizer 85

The current algorithm is straight forward. After each instruction, we check whether its
BAT arguments are needed in the future. If not, we inject a garbage collection statement to
release them, provided there are no other reasons to retain it. This should be done carefully,
because the instruction may be part of a loop. If the variable is defined inside the loop, we
can safely remove it.

5.2.14 Heuristic rewrites rules

One of the oldest optimizer tricks in relational query processing is to apply heuristic rules
to reduce the processing cost. For example, a selection predicate is pushed through another
operator to reduce the number of tuples to consider. Heuristic rewrites are relatively easy to
apply in a context where the expression is still close to a relational algebra tree. Therefore,
many of the standard rewrite rules are already applied by the SQL front-end as part of its
strategic optimization decisions.

Finding rewrite opportunities within a linear MAL program may be more difficult. For
example, the pattern should respect the flow of control that may already be introduced.
The last resort for the optimizer builder is to write a C-function to look for a pattern of
interest and transform it. The code base contains an example how to built such user specific
optimizer routines. It translates the pattern:

y:= reverse(R);
z:= select(y,l,h);

into the statement:
z:= selectHead(x,R,l,h)

5.2.15 Join Paths

The routine optimizer.joinPath() walks through the program looking for join operations
and cascades them into multiple join paths. To illustrate, consider

a:= bat.new(:oid,:oid);
b:= bat.new(:oid,:oid);
c:= bat.new(:oid,:str);
j1:= algebra.join(a,b);
j2:= algebra.join(j1,c);
j3:= algebra.join(b,b);
j4:= algebra.join(b,j3);

The optimizer will first replace all arguments by their join sequence. The underlying
instructions are left behind for the deadcode optimizer to be removed.

a:= bat.new(:oid,:oid);
j1:= algebra.join(a,b);
j2:= algebra.joinPath(a,b,c);
j3:= algebra.join(b,b);
j4:= algebra.joinPath(b,b,b);

In principle, the joinpaths may contain common subpaths, whose materialization would
improve performance. The SQL front-end produces often produces snippets of the following
structure

t1:= algebra.join(b,c);
z1:= algebra.join(a,t1);

Chapter 5: The MAL Optimizer 86

...
t2:= algebra.join(b,d);
z2:= algebra.join(a,t2);

The joinpath would merge them into
z1:= algebra.joinPath(a,b,c);

...
z2:= algebra.joinPath(a,b,d);

which are handle by a heuristic looking at the first two argments and re-uses a materi-
alized join.

_13:= algebra.join(a,b);
z1:= algebra.join(_13,c);

...
z2:= algebra.join(_13,d);

An alternative is to make recognition of the common re-useable paths an integral part
of the joinPath body.

x3:= algebra.join(a,b);
r3:= bat.reverse(x3);
j1:= join(c,r3);

rb:= bat.reverse(b);
ra:= bat.reverse(a);
j1:= algebra.joinpath(c,rb,ra);

As a final step in the speed up of the joinpath we consider clustering large operands if
that is expected to improve IO behavior.

5.2.16 Macro and Orcam Processing

The optimizers form the basis for replacing code fragments. Two optimizers are focused on
code expansion and contraction. The former involves replacing individual instructions by a
block of MAL code, i.e. a macro call. The latter depicts the inverse operation, a group of
instructions is replaced by a single MAL assignment statement, i.e. a orcam call.

The macro facility is limited to type-correct MAL functions, which means that replace-
ment is not essential from a semantic point of view. They could have been called, or the
block need not be compressed. It is equivalent to inline code expansion.

The macro and orcam transformations provide a basis to develop front-end specific
code generation templates. The prototypical test case is the following template:

function user.joinPath(a:bat[:any_1,:any_2],
b:bat[:any_2,:any_3],
c:bat[:any_3,:any_4]):bat[:any_1,:any_4]

address fastjoinpath;
z:= join(a,b);
zz:= join(z,c);
return zz;

end user.joinPath;

The call optimizer.macro("user", "joinPath") hunts for occurrences of the instruc-
tion call in the block in which it is called and replaces it with the body, i.e. it in-lines

Chapter 5: The MAL Optimizer 87

the code. Conversely, the optimizer.orcam("user", "joinPath") attempts to localize a
block of two join operations and, when found, it is replaced by the direct call to joinPath.
In turn, type resolution then directs execution to a built-in function fastjoinpath.

The current implementation is limited to finding a consecutive sequence, ending in a
return-statement. The latter is needed to properly embed the result in the enclosed envi-
ronment. It may be extended in the future to consider the flow of control as well.

5.2.17 Known issues

The functions subject to expansion or contraction should be checked on ’proper’ behavior.
The current implementation is extremely limited. The macro optimizer does not recog-

nize use of intermediate results outside the block being contracted. This should be checked
and it should block the replacement, unless the intermediates are part of the return list.
Likewise, we assume here that the block has a single return statement, which is also the
last one to be executed.

The macro optimizer can only expand functions. Factories already carry a significant
complex flow of control that is hard to simulate in the nested flow structure of an arbitrary
function.

The orcam optimizer can not deal with calls controlled by a barrier. It would often
require a rewrite of several other statements as well.

pattern optimizer.macro(targetmod:str,targetfcn:str):void
address OPTmacro
comment "Inline the code of the target function.";
pattern optimizer.macro(mod:str,fcn:str,targetmod:str,targetfcn:str):void
address OPTmacro
comment "Inline a target function used in a specific function.";

pattern optimizer.orcam(targetmod:str,targetfcn:str):void
address OPTorcam
comment "Inverse macro processor for current function";
pattern optimizer.orcam(mod:str,fcn:str,targetmod:str,targetfcn:str):void
address OPTorcam
comment "Inverse macro, find pattern and replace with a function call.";

5.3 Memo-based Query Execution

Modern cost-based query optimizers use a memo structure to organize the search space for
an efficient query execution plan. For example, consider an oid join path ’A.B.C.D’. We
can start the evaluation at any point in this path.

Its memo structure can be represented by a (large) MAL program. The memo levels
are encapsulated with a choice operator. The arguments of the second dictate which
instructions to consider for cost evaluation.

...
scheduler.choice("getVolume");
T1:= algebra.join(A,B);
T2:= algebra.join(B,C);

Chapter 5: The MAL Optimizer 88

T3:= algebra.join(C,D);
scheduler.choice("getVolume",T1,T2,T3);
T4:= algebra.join(T1,C);
T5:= algebra.join(A,T2);
T6:= algebra.join(T2,D);
T7:= algebra.join(B,T3);
T8:= algebra.join(C,D);
scheduler.choice("getVolume",T4,T5,T6,T7,T8);
T9:= algebra.join(T4,D);
T10:= algebra.join(T5,D);
T11:= algebra.join(A,T6);
T12:= algebra.join(A,T7);
T13:= algebra.join(T1,T8);
scheduler.choice("getVolume",T9,T10,T11,T12,T13);
answer:= scheduler.pick(T9, T10, T11, T12, T13);

The scheduler.choice() operator calls a builtin getVolume for each target variable
and expects an integer-valued cost. In this case it returns the total number of bytes uses as
arguments.

The target variable with the lowest cost is chosen for execution and remaining variables
are turned into a temporary NOOP operation.(You may want to re-use the memo) They
are skipped by the interpreter, but also in subsequent calls to the scheduler. It reduces the
alternatives as we proceed in the plan.

A built-in naive cost function is used. It would be nice if the user could provide a private
cost function defined as a pattern with a polymorphic argument for the target and a :lng
result. Its implementation can use the complete context information to make a decision.
For example, it can trace the potential use of the target variable in subsequent statements
to determine a total cost when this step is taken towards the final result.

A complete plan likely includes other expressions to prepare or use the target variables
before reaching the next choice point. It is the task of the choice operator to avoid any
superfluous operation.

The MAL block should be privately owned by the caller, which can be assured with
scheduler.isolation().

A refinement of the scheme is to make cost analysis part of the plan as well. Then you
don’t have to include a hardwired cost function.

Acost:= aggr.count(A);
Bcost:= aggr.count(B);
Ccost:= aggr.count(C);
T1cost:= Acost+Bcost;
T2cost:= Bcost+Ccost;
T3cost:= Ccost+Dcost;
scheduler.choice(T1cost,T1, T2cost,T2, T3cost,T3);
T1:= algebra.join(A,B);
T2:= algebra.join(B,C);
T3:= algebra.join(C,D);
...

Chapter 5: The MAL Optimizer 89

5.3.1 Merge Tables

A merge association table (MAT) descriptor defines an ordered collection of type compatible
BATs, whose union represents a single (virtual) BAT. The MAT may represent a partitioned
BAT (see BPM), but could also be an arbitrary collection of temporary BATs within a
program fragment.

The MAT definition lives within the scope of a single block. The MAT optimizer simply
expands the plan to deal with its components on an instruction basis. Only when a blocking
operator is encounted, the underlying BAT is materialized.

The MAT object cannot be passed as an argument to any function without first being
materialized. Simply because the MAT is not known by the type system and none of the
lower level operations are aware of its existence.

In the first approach of the MAT optimizer we assume that the first BAT in the MAT
sequence is used as an accumulator. Furthermore, no semantic knowledge is used to reduce
the possible superflous (semi)joins. Instead, we limit expansion to a single argument. This
is changed at a later stage when a cost-based evaluation can be used to decide different.

To illustrate, consider:
m0:= bat.new(:oid,:int);
m1:= bat.new(:oid,:int);
m2:= bat.new(:oid,:int);
b := mat.new(m0,m1,m2);
s := algebra.select(b,1,3);
i := aggr.count(s);
io.print(s);
io.print(i);
c0 := bat.new(:int,:int);
c1 := bat.new(:int,:int);
c := mat.new(c0,c1);
j := algebra.join(b,c);
io.print(j);

The selection and aggregate operations can simply be rewritten using a MAT:
_33 := algebra.select(m0,1,3);
_34 := algebra.select(m1,1,3);
_35 := algebra.select(m2,1,3);

s := mat.new(_33,_34,_35);
i := 0:int;
_36 := aggr.count(_33);
i := calc.+(i,_36);
_37 := aggr.count(_34);
i := calc.+(i,_37);
_38 := aggr.count(_35);
i := calc.+(i,_38);
io.print(i);

The print operation does not have MAT semantics yet. It requires a function that does
not produce the header with each call. Instead, we can also pack the elements before
printing.

Chapter 5: The MAL Optimizer 90

s := mat.pack(_33,_34,_35);
io.print(s);

For the join we have to generate all possible combinations, not knowing anything about
the properties of the components. The current heuristic is to limit expansion to a single
argument. This leads to

b := mat.pack(m0,m1,m2);
_39 := algebra.join(b,c0);
_40 := algebra.join(b,c1);
j := mat.new(_39,_40);

The drawback of the scheme is the potential explosion in MAL statements. A challenge
of the optimizer is to find the minimum by inspection of the properties of the MAT elements.
For example, it might attempt to partially pack elements before proceding. This would be
a runtime scheduling decision.

Alternatively, the system could use MAT iterators to avoid packing at the cost of more
complex program analysis afterwards.

ji:= bat.new(:oid,:int);
barrier b:= mat.newIterator(m0,m1,m2);
barrier c:= mat.newIterator(c0,c1);
ji := algebra.join(b,c);
bat.insert(j,ji);
redo c:= mat.newIterator(c0,c1);
redo b:= mat.newIterator(m0,m1,m2);
exit c;
exit b;

5.3.2 Multiplex Compilation

The MonetDB operator multiplex concept has been pivotal to easily apply any scalar
function to elements in a containers. Any operator cmd came with its multiplex
variant [cmd]. Given the signature cmd(T1,..,Tn) : Tr, it could be applied also as
[CMD](bat[:any 1,:T1],...,bat[any 1,Tn]) :bat[any 1,Tr].

The semantics of the multiplex is to perform the positional join on all bat-valued pa-
rameters, and to execute the CMD for each combination of matching tuples. All results are
collected in a result BAT. All but one argument may be replaced by a scalar value.

The generic solution to the multiplex operators is to translate them to a MAL loop. A
snippet of its behaviour:

b:= bat.new(:int,:int);
bat.insert(b,1,1);
c:bat[:int,:int]:= mal.multiplex("calc.+",b,1);

optimizer.multiplex();

The current implementation requires the target type to be mentioned explicitly. The
result of the optimizer is:

b := bat.new(:int,:int);
bat.insert(b,1,1);
_8 := bat.new(:int,:int);

Chapter 5: The MAL Optimizer 91

barrier (_11,_12,_13):= bat.newIterator(b);
_15 := calc.+(_13,1);
bat.insert(_8,_12,_15);
redo (_11,_12,_13):= bat.hasMoreElements(b);

exit (_11,_12,_13);
c := _8;

5.3.3 BAT Partitions

Limitations on the addressing space in older PCs and the need for distributed storage makes
that BATs ideally should be looked upon as a union of smaller BATs which are processed
within the (memory) resource limitations given.

The partition() optimizer with the supportive bat partition library bpm addresses the
issue with an adaptive database segmentation algorithm. It is designed incrementally with
a focus on supporting the SQL front-end. In particularly, the operators considered is a
limited subset of MAL. Occurrence of an operator outside this set terminates the optimizer
activities.

The operation optimizer.partitions() hunts for bindings of SQL column BATs and
prepare code for using partitioned versions instead.

We use two implementations. The first one attempts to find segments of linear dependent
data and builds an iterator around it. This approach is tricky, because you have to take care
of special cases. In particular, the semantics of the operators on the sequence construction
posed quite some problems.

The naive() approach simply looks at individual operations and surround them with an
iterator. An alias table is kept around for re-use and detect already partitioned operands.
The drawback is that potentially a partitioned BAT is read multiple times [it depends on the
re-use of variables, which can be calculated] and write+read of intermediates. Experiments
should demonstrate the optimal one.

5.3.4 Peephole optimization

Recursive descend query compilers easily miss opportunities for better code generation,
because limited context is retained or lookahead available. The peephole optimizer is built
around such recurring patterns and compensates for the compilers ’mistakes’. The collection
of peephole patterns should grow over time and front-end specific variations are foreseen.

The SQL frontend heavily relies on a pivot table, which is a generated oid sequence. Un-
fortunately, this is not seen and the pattern ’$i := calc.oid(0@0); $j:= algebra.markT($k,$i);’
occurs often. This can be replaced with ’$j:= algebra.markT($k)’;

Another example of a 2-way instruction sequence produced is then ’$j:= alge-
bra.markT($k); $l:= bat.reverse($j);’, which can be replaced by ’$l:= algebra.markH($k);’.

The reverse-reverse operation also falls into this category. Reversal pairs may result from
the processing scheme of a front-end compiler or from a side-effect from other optimization
steps. Such reversal pairs should be removed as quickly as possible, so as to reduce the
complexity of finding alternative optimization opportunities. As in all cases we should
ensure that the intermediates dropped are not used for other purposes as well.

r:bat[:int,:int]:= bat.new(:int,:int);
o:= calc.oid(0@0);

Chapter 5: The MAL Optimizer 92

z:= algebra.markT(r,o);
rr:= bat.reverse(z);
s := bat.reverse(r);
t := bat.reverse(s);
io.print(t);
optimizer.peephole();

which is translated by the peephole optimizer into:
r:bat[:int,:int] := bat.new(:int,:int);
rr := algebra.markH(r);
io.print(r);

Another example is the combination of a BAT partition operation followed by a re-
construction without using the partitions individually.

5.3.5 Query Execution Plans

A commonly used data structure to represent and manipulate a query is a tree (or graph).
Its nodes represent the operators and the leaves the operands. Such a view comes in handy
when you have to re-organize whole sections of code or to built-up an optimized plan bottom
up, e.g. using a memo structure.

The MAL optimizer toolkit provides functions to overlay the body of any MAL block
with a tree (graph) structure and to linearize them back into a MAL block. The linearization
order is determined by a recursive descend tree walk from the anchor points in the source
program.

To illustrate, consider the code block:
#T1:= bat.new(:int,:int);
#T2:= bat.new(:int,:int);
#T3:= bat.new(:int,:int);
#T4:= bat.new(:int,:int);
a:= algebra.select(T1,1,3);
b:= algebra.select(T2,1,3);
c:= algebra.select(T3,0,5);
d:= algebra.select(T4,0,5);
e:= algebra.join(a,c);
f:= algebra.join(b,d);
h:= algebra.join(e,f);
optimizer.dumpQEP();

which produces an indented structure of the query plan.
h := algebra.join(e,f);

e := algebra.join(a,c);
a := algebra.select(T1,1,3);

T1 := bat.new(:int,:int);
c := algebra.select(T3,0,5);

T3 := bat.new(:int,:int);
f := algebra.join(b,d);

b := algebra.select(T2,1,3);

Chapter 5: The MAL Optimizer 93

T2 := bat.new(:int,:int);
d := algebra.select(T4,0,5);

T4 := bat.new(:int,:int);

Any valid MAL routine can be overlayed with a tree (graph) view based on the flow
dependencies, but not all MAL programs can be derived from a simple tree. For example,
the code snippet above when interpreted as a linear sequence can not be represented unless
the execution order itself becomes an operator node itself.

However, since we haven’t added or changed the original MAL program, the routine
qep.propagate produces the orginial program, where the linear order has priority. If,
however, we had entered new instructions into the tree, they would have been placed in
close proximity of the other tree nodes.

Special care is given to the flow-of-control blocks, because to produce a query plan section
that can not easily be moved around. [give dot examples]

5.3.6 Range Propagation

Almost all queries are interested in a few slices of the table. If applied to a view, the query
plans often contain multiple selections over the same column. They may also have fixed
range arguments comming from fragmentation criteria.

The purpose of the pushranges optimizer is to minimize the number of table scans by
cascading the range terms as much as possible. Useless instructions are removed from the
plan.

b := bat.new(:oid,:int);
s1:= algebra.select(b,1,100);
s2:= algebra.select(s1,5,95);
s3:= algebra.select(s2,50,nil);
s4:= algebra.select(s3,nil,75);
optimizer.pushranges();

This lengthly sequence can be compressed into a single one:
b := bat.new(:oid,:int);
s1:= algebra.select(b,50,75);

A union over two range selections from a single source could also be a target.
t1:= algebra.select(b,1,10);
t2:= algebra.select(b,0,5);
t3:= algebra.union(t1,t2);

would become
t3:= algebra.select(0,10);

5.3.7 The recycler

Query optimization and processing in off-the-shelf database systems is often still focused on
individual queries. The queries are analyzed in isolation and ran against a kernel regardless
opportunities offered by concurrent or previous invocations.

This approach is far from optimal and two directions to improve are explored: materi-
alized views and (partial) result-set reuse. Materialized views are derived from query logs.
They represent common sub-queries, whose materialization improves subsequent processing

Chapter 5: The MAL Optimizer 94

times. Re-use of (partial) results is used in those cases where a zooming-in or navigational
application is at stake.

The Recycler optimizer and module extends this with a middle out approach. They
exploit the materialize-all-intermediate approach of MonetDB by deciding to keep a hold
on them as long as deemed beneficial.

The approach taken is to mark the instructions in a MAL program using the recycler
optimizer call, such that their result is retained in a global recycle cache hardwired in
the MAL interpreter. Instructions become subject to the Recycler if at least one of its
arguments is a BAT and all others are either constants or variables already known in the
Recycler.

Upon execution, the recycler is called from the inner loop of the MAL interpreter to
first check for an up-to-date result to be picked up at no cost. Otherwise, it evaluates the
instruction and calls upon policy functions to decide if it is worthwhile to keep.

The Recycler comes with a few policy controlling operators to experiment with its effect
in concrete settings. The retain policy controls when to keep results around, the reuse policy
looks after exact duplicate instructions or uses semantical knowledge on MAL instructions
to detect potential reuse gain (e.g. reuse select results). And finally, the cache policy looks
after the storage space for the intermediate result pool. The details are described in the
recycle module.

pattern optimizer.recycle():str
address OPTrecycle;
pattern optimizer.recycle(mod:str, fcn:str):str
address OPTrecycle
comment "Replicator code injection";

The number of overloaded instructions is kept to a minimum.

#ifndef _OPT_RECYCLER_
#define _OPT_RECYCLER_
#include "opt_prelude.h"
#include "opt_support.h"
#include "mal_recycle.h"

/* #define DEBUG_OPT_RECYCLER */

The variables are all checked for being eligible as a variable subject to recycling control.
A variable may only be assigned a value once. The function is a sql.bind(-,-,-,0) or all
arguments are already recycle enabled or constant.

The arguments of the function cannot be recycled. They change with each call. This
does not mean that the instructions using them can not be a target of recycling.

Just looking at a kept result target is not good enough. You have to sure that the
arguments are also the same. This rules out function arguments.

The recycler is targeted towards a query only database. The best effect is obtained for
a single-user mode (sql debug=32) when the delta-bats are not processed which allows
longer instruction chains to be recycled. Update statements are not recycled. They trigger
cleaning of the recycle cache at the end of the query. Only intermediates derived from

Chapter 5: The MAL Optimizer 95

the updated columns are invalidated. Separate update instructions in queries, such as
bat.append implementing ’OR’, are monitored and also trigger cleaning the cache.

#include "mal_config.h"
#include "opt_recycler.h"
#include "mal_instruction.h"

static int
OPTrecycleImplementation(Client cntxt, MalBlkPtr mb, MalStkPtr stk, InstrPtr p)
{
int i, j, cnt, actions = 0;
Lifespan span;
InstrPtr *old, q;
int limit, updstmt = 0;
char *recycled;
short app_sc = -1,app_tbl = -1;

(void) cntxt;
(void) stk;
/* watch out, instructions may introduce new variables */
limit= mb->stop;
old = mb->stmt;

for (i = 1; i<limit; i++) {
p = old[i];
if (getModuleId(p)==sqlRef &&

(getFunctionId(p) == affectedRowsRef ||
getFunctionId(p) == exportOperationRef ||
getFunctionId(p) == appendRef ||
getFunctionId(p) == updateRef ||
getFunctionId(p) == deleteRef))

updstmt = 1;
}

span = setLifespan(mb);
if (span == NULL)
return 0;

recycled= GDKzalloc(sizeof(char)*mb->vtop*2);
if (recycled == NULL)
return 0;
newMalBlkStmt(mb, mb->ssize);
pushInstruction(mb,old[0]);

/* create a handle for recycler */
q= newFcnCall(mb,"recycle","prelude");
for (i = 1; i<limit; i++) {

Chapter 5: The MAL Optimizer 96

p = old[i];
if (hasSideEffects(p,TRUE) || isUnsafeFunction(p)){
if(getModuleId(p)== recycleRef){ /*don’t inline recycle instr. */
freeInstruction(p);
continue;
}
pushInstruction(mb,p);
/* update instructions are not recycled but monitored*/
if(isUpdateInstruction(p)){
if (getModuleId(p) == batRef &&
(getArgType(mb,p,1)==TYPE_bat
|| isaBatType(getArgType(mb, p,1)))){
recycled[getArg(p,1)]= 0;
q= newFcnCall(mb,"recycle","reset");
pushArgument(mb,q, getArg(p,1));
actions++;

}
if (getModuleId(p) == sqlRef){
if (getFunctionId(p) == appendRef){
app_sc = getArg(p,1);
app_tbl = getArg(p,2);
} else {
q= newFcnCall(mb,"recycle","reset");
pushArgument(mb,q, getArg(p,1));
pushArgument(mb,q, getArg(p,2));
if (getFunctionId(p) == updateRef)
pushArgument(mb,q, getArg(p,3));

}
actions++;

}
}
continue;
}
if (p->barrier && p->token != CMDcall){
/* never save a barrier unless it is a command and side-effect free */
pushInstruction(mb,p);
continue;
}

if(p->token== ENDsymbol){
if (updstmt && app_sc >= 0){

q= newFcnCall(mb,"recycle","reset");
pushArgument(mb,q, app_sc);
pushArgument(mb,q, app_tbl);

}
(void) newFcnCall(mb,"recycle","epilogue");
pushInstruction(mb,p);

Chapter 5: The MAL Optimizer 97

continue;
}

/* don’t change instructions in update statements */
if(updstmt){
pushInstruction(mb,p);
continue;
}

/* skip simple assignments */
if(p->token == ASSIGNsymbol){
pushInstruction(mb,p);
continue;
}

/* general rule: all arguments are constants or recycled */
cnt = 0;
for (j=p->retc; j<p->argc; j++)
if(recycled[getArg(p,j)] || isVarConstant(mb, getArg(p,j)))
cnt++;

if (cnt == p->argc-p->retc) {
#ifdef DEBUG_OPT_RECYCLER

stream_printf(cntxt->fdout,"recycle instruction n");
printInstruction(cntxt->fdout,mb, 0, p,LIST_MAL_ALL);

#endif
actions ++;
p->recycle = REC_MAX_INTEREST; /* this instruction is to be monitored */
for (j= 0; j < p->retc; j++)
if (getLastUpdate(span, getArg(p,j)) == i)
recycled[getArg(p,j)] = 1;

}

The expected gain is largest if we can re-use selections on the base tables in SQL. These,
however, are marked as uselect() calls, which only produce the oid head. For cheap types
we preselect using select() and re-map uselect() back over this temporary. For the time
being for all possible selects encountered are marked for re-use.

/* take care of semantic driven recyling */
/* for selections check the bat argument only
the range is often template parameter*/
if((getFunctionId(p)== selectRef ||

getFunctionId(p)== antiuselectRef ||
getFunctionId(p)== likeselectRef ||
getFunctionId(p)== putName("like",4) ||

getFunctionId(p)== putName("thetaselect",11) ||
getFunctionId(p)== putName("thetauselect",12)) &&

recycled[getArg(p,1)]){
p->recycle = REC_MAX_INTEREST;

Chapter 5: The MAL Optimizer 98

actions ++;
if (getLastUpdate(span, getArg(p,0)) == i)
recycled[getArg(p,0)] = 1;

}
if(getFunctionId(p)== uselectRef && recycled[getArg(p,1)]) {
if (!ATOMvarsized(getGDKType(getArgType(mb,p,2)))) {
q = copyInstruction(p);
getArg(q,0)= newTmpVariable(mb,TYPE_any);
setFunctionId(q, selectRef);
q->recycle = REC_MAX_INTEREST;
recycled[getArg(q,0)] = 1;
pushInstruction(mb,q);
getArg(p,1) = getArg(q,0);
setFunctionId(p,markTRef);
p->argc = 2;
}
p->recycle = REC_MAX_INTEREST;
actions ++;
if (getLastUpdate(span, getArg(p,0)) == i)
recycled[getArg(p,0)] = 1;

}

if(getModuleId(p) == pcreRef) {
if ((getFunctionId(p)== selectRef && recycled[getArg(p,2)]) ||

(getFunctionId(p)== uselectRef && recycled[getArg(p,2)])){
p->recycle = REC_MAX_INTEREST;
actions ++;
if (getLastUpdate(span, getArg(p,0)) == i)
recycled[getArg(p,0)] = 1;
}
else if(getFunctionId(p)== likeuselectRef && recycled[getArg(p,1)]) {
q = copyInstruction(p);
getArg(q,0)= newTmpVariable(mb,TYPE_any);
setFunctionId(q, likeselectRef);
q->recycle = REC_MAX_INTEREST;
recycled[getArg(q,0)] = 1;
pushInstruction(mb,q);
getArg(p,1) = getArg(q,0);
setFunctionId(p,markTRef);
setModuleId(p,algebraRef);
p->argc = 2;
p->recycle = REC_MAX_INTEREST;
actions ++;
if (getLastUpdate(span, getArg(p,0)) == i)
recycled[getArg(p,0)] = 1;

}
}

Chapter 5: The MAL Optimizer 99

The sql.bind instructions should be handled carefully The delete and update BATs should
not be recycled, because they may lead to view dependencies that later interfere with the
transaction commits.

if (getModuleId(p)== sqlRef &&
(((getFunctionId(p)==bindRef || getFunctionId(p) == putName("bind_idxbat",11)) &&
getVarConstant(mb, getArg(p,4)).val.ival != 0) ||
getFunctionId(p)== binddbatRef)) {
recycled[getArg(p,0)]=0;
p->recycle = REC_NO_INTEREST; /* this instruction is not monitored */
}

if (getModuleId(p) == octopusRef &&
getFunctionId(p) == bindRef) {
recycled[getArg(p,0)] = 1;
p->recycle = REC_MAX_INTEREST;

}

pushInstruction(mb,p);
}
GDKfree(span);
GDKfree(old);
GDKfree(recycled);
mb->recycle = actions > 0;
return actions;
}

5.3.8 Optimizer code wrapper

The optimizer wrapper code is the interface to the MAL optimizer calls. It prepares the
environment for the optimizers to do their work and removes the call itself to avoid endless
recursions.

Before an optimizer is finished, it should leave a clean state behind. Moreover, the
information of the optimization step is saved for debugging and analysis.

The wrapper expects the optimizers to return the number of actions taken, i.e. number
of succesful changes to the code.

exportOptimizer[?](recycle)
#endif

#include "opt_statistics.h"
wrapOptimizer[?](recycle,OPT_CHECK_TYPES)

Chapter 5: The MAL Optimizer 100

5.3.9 Remote Queries

MAL variables may live at a different site from where they are used. In particular, the
SQL front-end uses portions of remote BATs as replication views. Each time such a view
is needed, the corresponding BAT is fetched and added to the local cache.

Consider the following snippet produced by a query compiler,

mid:= mapi.reconnect("s0_0","localhost",50000,"monetdb","monetdb","mal");
b:bat[:oid,:int] := mapi.bind(mid,"rvar");
c:=algebra.select(b,0,12);
io.print(c);
d:=algebra.select(b,5,10);
low:= 5+1;
e:=algebra.select(d,low,7);
i:=aggr.count(e);
io.printf(" count %d\n",i);
io.print(d);

which uses a BAT rvar stored at the remote site db1.

There are several options to execute this query. The remote BAT can be fetched as soon
as the bind operation is executed, or a portion can be fetched after a remote select, or the
output for the user could be retrieved. An optimal solution depends on the actual resources
available at both ends and the time to ship the BAT.

The remote query optimizer assumes that the remote site has sufficient resources to
handle the instructions. For each remote query it creates a private connection. It is re-used
in subsequent calls .

The remote environment is used to execute the statements. The objects are retrieved
just before they are locally needed.

mid:= mapi.reconnect("s0_0","localhost",50000,"monetdb","monetdb","mal");
mapi.rpc(mid,"b:bat[:oid,:int] :=bbp.bind(\"rvar\");");
mapi.rpc(mid,"c:=algebra.select(b,0,12);");
c:bat[:oid,:int]:= mapi.rpc(mid, "io.print(c);");
io.print(c);
mapi.rpc(mid,"d:=algebra.select(b,5,10);");
low:= 5+1;
mapi.put(mid,"low",low);
mapi.rpc(mid,"e:=algebra.select(d,low,7);");
mapi.rpc(mid,"i:=aggr.count(d);");
i:= mapi.rpc(mid,"io.print(i);");
io.printf(" count %d\n",i);
io.print(d);

To reduce the number of interprocess communications this code can be further improved
by glueing the instructions together when until the first result is needed.

5.3.10 Singleton Set Reduction

Application semantics and precise cost analysis may identify the result of an operation to
produce a BAT with a single element. Such variables can be tagged with the property

Chapter 5: The MAL Optimizer 101

singleton, whereafter the operation optimizer.singleton() derives an MAL program
using a symbolic evaluation as far as possible.

During its evaluation, more singleton sets can be created, leading to a ripple effect
through the code. A non-optimizable instruction leads to a construction of a new table
with the single instance.

b:= bat.new(:int,:int);
bat.insert(b,1,2);
c{singleton}:= algebra.select(b,0,4);
d:= algebra.markH(c);
io.print(d);
optimizer.singleton();

is translated by into the code block
b := bat.new(:int,:int);
bat.insert(b,1,2);
c{singleton} := algebra.select(b,0,4);
(_15,_16):= bat.unpack(c{singleton});
d := bat.pack(nil,_16);
io.print(d);

5.3.11 Stack Reduction

The compilers producing MAL may generate an abundance of temporary variables to hold
the result of expressions. This leads to a polution of the runtime stack space, because space
should be allocated and garbage collection tests should be performed.

The routine optimizer.reduce() reduces the number of scratch variables to a mini-
mum. All scratch variables of the same underlying type share the storage space. The result
of this optimizer can be seen using the MonetDB debugger, which marks unused variables
explicitly. Experience with the SQL front-end shows, that this optimization step easily
reduces the stack consumption by over 20%.

This optimizer needs further testing. Furthermore, the other optimizers should be careful
in setting the isused property, or this property can again be easily derived.

5.3.12 Strength Reduction

An effective optimization technique in compiler construction is to move invariant statements
out of the loops. The equivalent strategy can be applied to the guarded blocks in MAL
programs. Any variable introduced in a block and assigned a value using a side-effect free
operation is a candidate to be moved. Furthermore, it may not be used outside the block
and the expression may not depend on variables assigned a value within the same block.

j:= "hello world";
barrier go:=true;

i:= 23;
j:= "not moved";
k:= j;
io.print(i);
redo go:= false;

exit go;

Chapter 5: The MAL Optimizer 102

z:= j;
optimizer.strengthReduction();

which is translated into the following code:
j := "hello world";
i := 23;

barrier go := true;
j := "not moved";
k := j;
io.print(i);
redo go:= false;

exit go;
z:= j;

Application is only applicable to loops and not to guarded blocks in general, because
execution of a statement outside the guarded block consumes processing resources which
may have been prohibited by the block condition.

For example, it doesn’t make sense to move creation of objects outside the barrier.

Chapter 6: The MAL Debugger 103

6 The MAL Debugger

In practice it is hard to write a correct MAL program the first time around. Instead, it is
more often constructed by trial-and-error. As long as there are syntax and semantic errors
the MAL compiler provides a sufficient handle to proceed. Once it passes the compiler we
have to resort to a debugger to assess its behavior.

Note, the MAL debugger described here can be used in conjunction with the textual
interface client mclient only. The JDBC protocol does not permit passing through infor-
mation that ’violates’ the protocol.

6.1 Program Debugging

To ease debugging and performance monitoring, the MAL interpreter comes with a gdb-like
debugger. An illustrative session elicits the functionality offered.

mal>function test(i:int):str;
mal> io.print(i);
mal> i:= i*2;
mal> b:= bat.new(:int,:int);
mal> bat.insert(b,1,i);
mal> io.print(b);
mal> return test:= "ok";
mal>end test;
mal>user.test(1);
[1]
#-----------------#
h t # name
int int # type
#-----------------#
[1, 2]

The debugger can be entered at any time using the call mdb.start(). An overview of the
available commands is readily available.

mal>mdb.start();
#mdb !end main;
mdb>help
next -- Advance to next statement
continue -- Continue program being debugged
catch -- Catch the next exception
break [<var>] -- set breakpoint on current instruction or <var>
delete [<var>] -- remove break/trace point <var>
debug <int> -- set kernel debugging mask
dot [<int>] [<file>] -- generate the dependency graph
step -- advance to next MAL instruction
module -- display a module signatures
atom -- show atom list
finish -- finish current call
exit -- terminate executionr

Chapter 6: The MAL Debugger 104

quit -- turn off debugging
list <obj> -- list current program block
List <obj> -- list with type information
span -- list the life span of variables
var <obj> -- print symbol table for module
optimizer <obj> -- display optimizer steps
print <var> -- display value of a variable
print <var> <cnt>[<first>] -- display BAT chunk
info <var> -- display bat variable properties
run -- restart current procedure
where -- print stack trace
down -- go down the stack
up -- go up the stack
trace <var> -- trace assignment to variables
trap <mod>.<fcn> -- catch MAL function call in console
set {timer,thread,flow,io,memory,bigfoot} -- set trace switches
unset -- turn off switches
help -- this message
mdb>

The term <obj> is an abbreviation for a MAL operation <mod>.<fcn>, optionally ex-
tended with a version number, i.e. [<nr>]. The var denotes a variable in the current stack
frame. Debugger commands may be abbreviated.

We walk our way through a debugging session, highlighting the effects of the debugger
commands. The call to mdb.start() has been encapsulated in a complete MAL function,
as shown by issuing the list command. A more detailed listing shows the binding to the
C-routine and the result of type resolution.

mal>mdb.start();
#end main;
mdb>l
function user.main():int;
mdb.start();
end main;
mdb>L
function user.main():int; # 0 (main:int)
mdb.start(); # 1 MDBstart (_1:void)
end main; # 2

The user module is the default place for function defined at the console. The modules
loaded can be shown typeing the command ’module’ (or ’m’ for short). The function
signatures become visible using the module and optionally the function name.

mdb>m alarm
#command alarm.alarm(secs:int,action:str):void address ALARMsetalarm;
#command alarm.ctime():str address ALARMctime;
#command alarm.epilogue():void address ALARMepilogue;
#command alarm.epoch():int address ALARMepoch;
#command alarm.prelude():void address ALARMprelude;
#command alarm.sleep(secs:int):void address ALARMsleep;

Chapter 6: The MAL Debugger 105

#command alarm.time():int address ALARMtime;
#command alarm.timers():bat[:str,:str] address ALARMtimers;
#command alarm.usec():lng address ALARMusec;
mdb>m alarm.sleep
#command alarm.sleep(secs:int):void address ALARMsleep;
mdb>

The debugger mode is left with a <return>. Any subsequent MAL instruction re-activates
the debugger to await for commands. The default operation is to step through the execution
using the ’next’ (’n’) or ’step’ (’s) commands, as shown below.

mal>user.test(1);
user.test(1);
mdb>n
io.print(i);
mdb>
[1]
i := calc.*(i,2);
mdb>
b := bat.new(:int,:int);
mdb>

The last instruction shown is next to be executed. The result can be shown using a
print statement, which contains the location of the variable on the stack frame, its name,
its value and type. The complete stack frame becomes visible with ’values’ (’v’) command:

bat.insert(b,1,i);
mdb>
io.print(b);
mdb>v
#Stack for ’test’ size=32 top=11
#[0] test = nil:str
#[1] i = 4:int
#[2] _2 = 0:int unused
#[3] _3 = 2:int constant
#[4] b = <tmp_1226>:bat[:int,:int] count=1 lrefs=1 refs=0
#[5] _5 = 0:int type variable
#[6] _6 = nil:bat[:int,:int] unused
#[7] _7 = 1:int constant
#[8] _8 = 0:int unused
#[9] _9 = "ok":str constant

The variables marked ’unused’ have been introduced as temporary variables, but which
are not referenced in the remainder of the program. It also illustrates basic BAT properties,
a complete description of which can be obtained using the ’info’ (’i’) command. A sample
of the BAT content can be printed passing tuple indices, e.g. ’print b 10 10’ prints the
second batch of ten tuples.

Chapter 6: The MAL Debugger 106

6.2 Handling Breakpoints

A powerful mechanism for debugging a program is to set breakpoints during the debugging
session. The breakpoints are designated by a target variable name, a [module.]function
name, or a MAL line number (#<number>).

The snippet below illustrates the reaction to set a break point on assignment to variable
’i’.

mal>mdb.start();
#end main;
mdb>
mal>user.test(1);
user.test(1);
mdb>break i
breakpoint on ’i’ not set
mdb>n
io.print(i);
mdb>break i
mdb>c
[1]
i := calc.*(i,2);
mdb>

The breakpoints remain in effect over multiple function calls. They can be removed with
the delete statement. A list of all remaining breakpoints is obtained with breakpoints.

The interpreter can be instructed to call the debugger as soon as an exception is raised.
Simply add the instruction mdb.setCatch(true).

6.3 Profile Switches

Switches control the level of detail output shown while debugging or tracing program ex-
ecution. They are toggled with the set and unset command. The following switches are
currently supported:

timer activates a listing of all instructions being executed. It is measured in wall-clock
time.

flow shows the total byte size of all BAT target results and input arguments. It is a
good indicator on the amount of data being processed.

memory keeps track on growing memory needs.

io keeps track on the amount of physical IO and is used to detect operators con-
suming excessive amounts of space.

bigfoot keeps track of the current and maximum virtual memory footprint of the
BATs.[incomplete]

The snippet below shows setting the memory and timer switch. The switches take
effect at the next instruction.

mdb>set timer
mdb>set flow

Chapter 6: The MAL Debugger 107

mdb>c
[3]
26 usec# 0 0# io.print(i=3)
6 usec# 0 0# i := calc.*(i=6, _3=2)
10 usec# 0 0# b := bat.new(_5=0, _6=0)
7 usec# 0 8# bat.insert(b=<tmp_167>bat[:int,:int]{1}, _8=1, i=6)
#-----------------#
h t # name
int int # type
#-----------------#
[1, 6]
41 usec# 0 8# io.print(b=<tmp_167>bat[:int,:int]{1})
7 usec# 0 0# return test := "ok";
211 usec# 0 0# user.test(_2=3)

6.4 Program Inspection

The debugger commands available for inspection of the program and symbol tables are:

list (List) [<mod>.<fcn>[’[’<nr>’]’]]
A listing of the current MAL block, or one designated by the <mod>.<fcn> is
produced. The [<nr>] extension provides access to an element in the MAL
block history. The alternative name ’List’ also produces the type information.

optimizer [<mod>.<fcn>[’[’<nr>’]’]]
Gives an overview of the optimizer actions in the history of the MAL block.
Intermediate results can be accessed using the list command.

atoms Lists the atoms currently known

modules [<mod>]
Lists the modules currently known. An optional <mod> argument produces a
list of all signatures within the module identified.

dot [<mod>.<fcn>[’[’<nr>’]’]] [<file>]
A dataflow diagram can be produced using the dot command. It expects a
function identifier with an optional history index and produces a file for the
Linux program dot, which can produce a nice, multi-page graph to illustrate
plan complexity.

mdb>dot user.test

This example produces the user-tst.dot in the current working directory. The program
call

dot -Tps user-tst-0.dot -o user-tst-0.ps

creates a postscript file with the graphs. With the Adobe reader professional you
can break it up into multiple pages. An alternative is the program available from
http://www.tug.org/tex-archive/support/poster/poster.c The result is shown
in the figure below:

Since the flow graphs become rather complex, an optional variable list limits its
size.[TODO]

Chapter 6: The MAL Debugger 108

6.5 Runtime Inspection and Reflection

Part of the debugger functionality can also be used directly with MAL instructions.
The execution trace of a snippet of code can be visualized encapsulation with
mdb.setTrace(true) and mdb.setTrace(false). Likewise, the performance can be
monitored with the command mdb.setTimer(on/off). Using a boolean argument makes
it easy to control the (performance) trace at run time. The following snippet shows the
effect of patching the test case.

mal>function test(i:int):str;
mal> mdb.setTrace(true);
mal> io.print(i);
mal> i:= i*2;
mal> b:= bat.new(:int,:int);
mal> bat.insert(b,1,i);
mal> io.print(b);
mal> mdb.setTrace(false);
mal> return test:= "ok";
mal>end test;
mal>user.test(1);
mdb.setTrace(_3=true)
[1]
io.print(i=1)
i := calc.*(i=2, _5=2)
b := bat.new(_7=0, _8=0)
bat.insert(b=<tmp_1226>, _10=1, i=2)
#-----------------#
h t # name
int int # type
#-----------------#
[1, 2]
io.print(b=<tmp_1226>)
261 usec! user.test(_2=1)
mal>

The command mdb.setTimer() toggles the performance traceing flag. The argument
is a boolen to designate its state. The primary output of the timer switch is statistics in
micro-seconds, the memory tracer shows the arena increment, and the IO tracer shows in-
and out-blocks. The time spent on preparing the trace information is excluded from the
report. For more detailed timing information the Linux tool valgrind may be of help.

The routines mdb.setFlow(), mdb.setMemory(), and mdb.setIO() (de-)activate the
other switches.

mal>function test(i:int):str;
mal> mdb.setTimer(true);
mal> io.print(i);
mal> i:= i*2;
mal> b:= bat.new(:int,:int);
mal> bat.insert(b,1,i);

Chapter 6: The MAL Debugger 109

mal> io.print(b);
mal> mdb.setTimer(false);
mal> return test:= "ok";
mal>end test;
mal>user.test(1);
6 usec# mdb.setTimer(_3=true)
[1]
43 usec# io.print(i=1)
5 usec# i := calc.*(i=2, _5=2)
24 usec# b := bat.new(_7=0, _8=0)
10 usec# bat.insert(b=<tmp_1226>, _10=1, i=2)
#-----------------#
h t # name
int int # type
#-----------------#
[1, 2]
172 usec# io.print(b=<tmp_1226>)
261 usec# user.test(_2=1)

It is also possible to activate the debugger from within a program using mdb.start().
It remains in this mode until you either issue a quit command, or the command mdb.stop()
instruction is encountered. The debugger is only activated when the user can direct its
execution from the client interface. Otherwise, there is no proper input channel and the
debugger will run in trace mode.

The program listing functionality of the debugger is also captured in the MAL
debugger module. The current code block can be listed using mdb.list() and
mdb.List(). An arbitrary code block can be shown with mdb.list(module,function) and
mdb.List(module,function). A BAT representation of the current function is return by
mdb.getDefinition().

The symbol table and stack content, if available, can be shown with the operations
mdb.var() and mdb.list(module,function) Access to the stack frames may be helpful in
the context of exception handling. The operation mdb.getStackDepth() gives the depth
and individual elements can be accessed as BATs using mdb.getStackFrame(n). The
top stack frame is accessed using mdb.getStackFrame().

6.6 Debugger Attachment

Debugging a running MAL process is simplified with a few hooks in the kernel. It is
illustrated with a short example.

First open a client connection using MAL as preferred language. Then the state of the
system can be inspected, in particular, the clients active can be looked up.

mal>b:= clients.getLogins();
mal>c:= clients.getUsers();
mal>io.print(b,c);
#---#
client login users # name
int str str # type

Chapter 6: The MAL Debugger 110

#---#
[0, "Thu Feb 7 15:57:08 2008", "0"]
[1, "Thu Feb 7 15:57:11 2008", "0"]

Locate the process you are interested in and obtain its identifier, say N (the first column
in the list above). The next step is to gracefully put the running process into debugging
mode without jeopardizing the application running.

mal> mdb.setTrap(1);
#process 1 put to sleep
mal> mdb.grab();

As soon as the next MAL instruction of process N starts the target process is put to
sleep and you can access the context for debugging. The control ends when you leave the
debugger with a ’quit’ command.

Chapter 7: The MAL Profiler 111

7 The MAL Profiler

A key issue in the road towards a high performance implementation is to understand where
resources are being spent. This information can be obtained using different tools and at
different levels of abstraction. A coarse grain insight for a particular application can be ob-
tained using injection of the necessary performance capturing statements in the instruction
sequence. Fine-grain, platform specific information can be obtained using existing profilers,
like valgrind (http://www.valgrind.org), or hardware performance counters.

The MAL profiler collects detailed performance information, such as cpu, memory and
statement information. It is optionally extended with IO activity, which is needed for coarse
grain profiling only, and estimated bytes read/written by an instruction.

The execution profiler is supported by hooks in the MAL interpreter. The default strat-
egy is to ship an event record immediately over a stream to a separate performance monitor,
formatted as a tuple. An alternative strategy is preparation for off-line performance anal-
ysis.

Reflective performance analysis is supported by an event cache, the event log becomes
available as a series of BATs.

7.1 Event Filtering

The profiler supports selective retrieval of performance information by tagging the instruc-
tions of interest. This means that a profiler call has a global effect, all concurrent users
are affected by the performance overhead. Therefore, it is of primary interest to single user
sessions.

The example below illustrates how the different performance counter groups are acti-
vated, instructions are filtered for tracking, and where the profile information is retained
for a posteriori analysis.

#profiler.activate("event");
#profiler.activate("pc");
#profiler.activate("operation");
profiler.activate("time");
profiler.activate("ticks");
#profiler.activate("cpu");
#profiler.activate("memory");
#profiler.activate("io");
#profiler.activate("bytes");
#profiler.activate("diskspace");
profiler.activate("statement");
profiler.setFilter("*","insert");
profiler.setFilter("*","print");

profiler.openStream("/tmp/MonetDBevents");
profiler.start();
b:= bbp.new(:int,:int);
bat.insert(b,1,15);
bat.insert(b,2,4);

Chapter 7: The MAL Profiler 112

bat.insert(b,3,9);
io.print(b);
profiler.stop();
profiler.closeStream();

In this example, we are interested in all functions name insert and print. A wildcard
can be used to signify any name, e.g. no constraints are put on the module in which the
operations are defined. Several profiler components are ignored, shown by commenting out
the code line.

Execution of the sample leads to the creation of a file with the following content. The
ticks are measured in micro-seconds.

time, ticks, stmt # name
["15:17:56", 12, "_27 := bat.insert(<tmp_15>{3},1,15);"]
["15:17:56", 2, "_30 := bat.insert(<tmp_15>{3},2,4);"]
["15:17:56", 2, "_33 := bat.insert(<tmp_15>{3},3,9);"]
["15:17:56", 245, "_36 := io.print(<tmp_15>{3});",]

7.2 Event Caching

Aside from shipping events to a separate process, the profiler can keep the events in a local
bat group. It is the default when no target file has been opened to collect the information.

Ofcourse, every measurement scheme does not come for free and may even obscure
performance measurements obtained through e.g. valgrind. The separate event caches can
be accessed using the operator profiler.getTrace(name). The current implementation
only supports access to time,ticks,pc,statement. The event cache can be cleared with
profiler.clearTrace().

Consider the following MAL program snippet:

profiler.setAll();
profiler.start();
b:= bbp.new(:int,:int);
bat.insert(b,1,15);
io.print(b);
profiler.stop();
s:= profiler.getTrace("statement");
t:= profiler.getTrace("ticks");
io.print(s,t);

The performance result of the program execution becomes:

#---#
h t t # name
int str int # type
#---#
[1, "b := bbp.new(0,0);", 51]
[2, "$6 := bat.insert(<tmp_22>,1,15);", 16]
[3, "$9 := io.print(<tmp_22>);", 189]

Chapter 7: The MAL Profiler 113

7.3 Monitoring Variables

The easiest scheme to obtain performance data is to retrieve the performance properties of
an instruction directly after it has been executed using getEvent(). It reads the profiling
stack maintained, provided you have started monitoring.

profiler setFilter(b);
profiler.start();
....
b:= algebra.select(a,0 1000); # some expensive operation
(clk, memread, memwrite):= profiler.getEvent();
...
profiler.stop();

7.4 The Stethoscope

The performance profiler infrastructure provides precisely control through annotation of a
MAL program. Often, however, inclusion of profiling statements is an afterthought.

The program stethoscope addresses this situation by providing a simple application
that can attach itself to a running server and extracts the profiler events from concurrent
running queries.

The arguments to stethoscope are the profiler properties to be traced and the applicable
filter expressions. For example,

stethoscope -t bat.insert algebra.join

tracks the microsecond ticks of two specific MAL instructions. A synopsis of the calling
conventions:

stethoscope [options] +[aefoTtcmibds]
-d | --dbname=<database_name>
-u | --user=<user>
-P | --password=<password>
-p | --port=<portnr>
-g | --gnuplot=<boolean>
-h | --host=<hostname>

Event selector:
a =aggregates

e =event
f =function
o =operation called
T =time
t =ticks
c =cpu statistics
m =memory resources
i =io resources
b =bytes read/written
d =diskspace needed
s =statement

Chapter 7: The MAL Profiler 114

p =pgfaults,cntxtswitches

Ideally, the stream of events should be piped into a 2D graphical tool, like xosview
(Linux). A short term solution is to generate a gnuplot script to display the numerics
organized as time lines. With a backup of the event lists give you all the information
needed for a descent post-mortem analysis.

A convenient way to watch most of the SQL interaction you may use the command:
stethoscope +tis algebra.* bat.* group.* sql.* aggr.*

Chapter 8: The MAL Modules 115

8 The MAL Modules

This section contains a synopsis of the modules being shipped and which use knowledge of
the MAL runtime context. They are sorted by module name and repetitive reading may be
required to understand all details.

batExtensions
Extensions to the kernel/bat module.

BBP BAT buffer pool interface.

Box Box variable interface.

Chopper Break a collection into chunks.

Clients Client record inspection.

Constants Global system defined values.

Factory Factory management interface.

Inspect Inspect the runtime symbol table(s).

I/O The input/output interface.

Language MAL language extension features.

MDB MAL debugger interface.

Manual Online manual material.

Mserver MonetDB server interface.

MAT Multiple association tables.

PBM Dealing with partitioned BATS.

Profiler Performance profiler.

PCRE Regular expression handling over strings.

Statistics A server-side statistics catalog.

Table Table output interface.

Transactions
Transaction interface

8.1 Module Loading

The server is bootstrapped by processing a MAL script with module def-
initions or extensions. For each module file encountered, the object li-
brary lib <modulename>.so is searched for in the location identified by
monet mod path=exec prefix/lib/MonetDB5:exec prefix/lib/MonetDB5/lib:exec prefix/lib/MonetDB5/bin.

The corresponding signature are defined in . . . /lib(64)/<modulename>.mal.
The default bootstrap script is called . . . /lib/MonetDB5/mal init.mal and it is desig-

nated in the configuration file as the mal init property. The rationale for this set-up is that
database administrators can extend/overload the bootstrap procedure without affecting the

Chapter 8: The MAL Modules 116

software package being distributed. It merely requires a different direction for the mal init
property. The scheme also isolates the functionality embedded in modules from inadvertise
use on non-compliant databases.

Unlike previous versions of MonetDB, modules can not be unloaded. Dynamic libraries
are always global and, therefore, it is best to load them as part of the server initialization
phase.

8.2 Module file loading

The default location to search for the module is in monet mod path unless an absolute path
is given. Loading further relies on the Linux policy to search for the module location in the
following order: 1) the colon-separated list of directories in the user’s LD LIBRARY PATH,
2) the libraries specified in /etc/ld.so.cache and 3) /usr/lib followed by /lib. If the module
contains a routine init, then that code is executed before the loader returns. Likewise the
routine fini is called just before the module is unloaded.

A module loading conflict emerges if a function is redefined. A duplicate load is simply
ignored by keeping track of modules already loaded.

8.3 BAT Extensions

The kernel libraries are unaware of the MAL runtime semantics. This calls for declar-
ing some operations in the MAL module section and register them in the kernel modules
explicitly.

A good example of this borderline case are BAT creation operations, which require a
mapping of the type identifier to the underlying implementation type.

Another example concerns the (un)pack operations, which direct access the runtime
stack to (push)pull the values needed.

pattern bat.new(ht:any_1, tt:any_2, b:bat[:any_3,:any_4])
:bat[:any_1,:any_2]

address CMDBATclone comment "Creates a new empty transient BAT by
cloning another.";

pattern bat.new(ht:any_1, tt:any_2) :bat[:any_1,:any_2]
address CMDBATnew comment "Creates a new empty transient BAT, with
head- and tail-types as indicated.";

pattern bat.new(ht:any_1, tt:any_2, size:int) :bat[:any_1,:any_2]
address CMDBATnewint comment "Creates a new BAT with sufficient space.";

pattern bat.new(ht:any_1, tt:any_2, size:lng) :bat[:any_1,:any_2]
address CMDBATnew comment "Creates a new BAT and allocate space.";

pattern bat.new(ht:oid, tt:any_2, size:int) :bat[:oid,:any_2]
address CMDBATnewint;

pattern bat.new(ht:oid, tt:any_2, size:lng) :bat[:oid,:any_2]
address CMDBATnew;

pattern bat.new(b:bat[:any_1,:any_2]) :bat[:any_1,:any_2]
address CMDBATnewDerived;

Chapter 8: The MAL Modules 117

pattern bat.new(b:bat[:any_1,:any_2], size:lng) :bat[:any_1,:any_2]
address CMDBATnewDerived;

command bat.new(nme:str):bat[:any_1,:any_2]
address CMDBATderivedByName comment "Localize a bat by name and pro-
duce a clone.";

command bat.reduce(b:bat[:any_1,:any_2]):bat[:any_1,:any_2]
address CMDBATreduce comment "Drop auxillary BAT structures.";

command bat.flush(b:bat[:any_1,:any_2]):void
address CMDBATflush comment "Designate a BAT as not needed anymore.";

pattern bat.setGarbage(b:bat[:any_1,:any_2]):void
address CMDBATsetGarbage comment "Designate a BAT as garbage.";

pattern bat.partition(b:bat[:any_1,:any_2]):bat[:any_1,:any_2]...
address CMDbatpartition comment "Create a series of cheap slices over the
first argument. The BUNs are distributed evenly.";

pattern
bat.partition(b:bat[:any_1,:any_2],pieces:int,part:int):bat[:any_1,:any_2]

address CMDbatpartition2 comment "Create a series of cheap slices over the
first argument. The BUNs are distributed evenly.";

pattern bat.unpack(b:bat[:any_1,:any_2])(h:any_1,t:any_2)
address CMDbatunpack comment "Extract the first tuple from a BAT.";

pattern bat.pack(h:any_1,t:any_2):bat[:any_1,:any_2]
address CMDbatpack comment "Pack a pair of values into a BAT.";

pattern bat.setBase(b:bat[:any_1,:any_2],c:bat[:any_1,:any_2]...):void
address CMDsetBase comment "Give the non-empty BATs consecutive oid
bases.";

8.4 BAT Buffer Pool

The BBP module implements a box interface over the BAT buffer pool. It is primarilly
meant to ease inspection of the BAT collection managed by the server.

The two predominant approaches to use bbp is to access the BBP with either bind or
take. The former merely maps the BAT name to the object in the bat buffer pool. A more
controlled scheme is to deposit, take, release and discard elements. Any BAT B created can
be brought under this scheme with the name N. The association N->B is only maintained
in the box administration and not reflected in the BAT descriptor. In particular, taking
a BAT object out of the box leads to a private copy to isolate the user from concurrent
updates on the underlying store. Upon releasing it, the updates are merged with the master
copy [todo].

The remainder of this module contains operations that rely on the MAL runtime setting,
but logically belong to the kernel/bat module.

module bbp;

command open():void
address CMDbbpopen comment "Locate the bbp box and open it.";

Chapter 8: The MAL Modules 118

command close():void
address CMDbbpclose comment "Close the bbp box.";

command destroy():void
address CMDbbpdestroy comment "Destroy the box";

pattern take(name:str) :bat[:any_1,:any_2]
address CMDbbptake comment "Load a particular bat.";

pattern deposit(name:str,v:bat[:any_1,:any_2]) :void
address CMDbbpdeposit comment "Enter a new bat into the bbp box.";

pattern deposit(name:str,loc:str) :bat[:any_1,:any_2]
address CMDbbpbindDefinition comment "Relate a logical name to a physical
BAT in the buffer pool.";

pattern commit():void
address CMDbbpReleaseAll comment "Commit updates for this client.";

pattern releaseAll():void
address CMDbbpReleaseAll comment "Commit updates for this client.";

pattern release(name:str,val:bat[:any_1,:any_2]) :void
address CMDbbprelease comment "Commit updates and release this BAT.";

pattern release(b:bat[:any_1,:any_2]):void
address CMDbbpreleaseBAT comment "Remove the BAT from further consid-
eration";

pattern destroy(b:bat[:any_1,:any_2]):void
address CMDbbpdestroyBAT1 comment "Schedule a BAT for removal at ses-
sion end.";

pattern destroy(b:bat[:any_1,:any_2],immediate:bit)
address CMDbbpdestroyBAT comment "Schedule a BAT for removal at session
end or immediately.";

pattern toString(name:str):str
address CMDbbptoStr comment "Get the string representation of an element
in the box.";

pattern discard(name:str):void
address CMDbbpdiscard comment "Remove the BAT from the box.";

pattern iterator(nme:str):lng
address CMDbbpiterator comment "Locate the next element in the box.";

pattern prelude():void
address CMDbbpprelude comment "Initialize the bbp box.";

pattern bind(name:str):bat[:any_1,:any_2]
address CMDbbpbind comment "Locate the BAT using its logical name";

pattern bind(head:str,tail:str):bat[:any_1,:any_2]
address CMDbbpbind2 comment "Locate the BAT using the head and tail
names in the BAT buffer pool");

Chapter 8: The MAL Modules 119

pattern bind(idx:int):bat[:any_1,:any_2]
address CMDbbpbindindex comment "Locate the BAT using its BBP index in
the BAT buffer pool";

pattern getObjects():bat[:int,:str]
address CMDbbpGetObjects comment "View of the box content.";

command getHeadType() :bat[:int,:str]
address CMDbbpHeadType comment "Map a BAT into its head type";

command getTailType() :bat[:int,:str]
address CMDbbpTailType comment "Map a BAT into its tail type";

command getNames() :bat[:int,:str]
address CMDbbpNames comment "Map BAT into its bbp name";

command getRNames() :bat[:int,:str]
address CMDbbpRNames comment "Map a BAT into its bbp physical name";

command getName(b:bat[:any_1,:any_2]):str
address CMDbbpName comment "Map a BAT into its internal name";

command getCount() :bat[:int,:lng]
address CMDbbpCount comment "Create a BAT with the cardinalities of all
known BATs";

command getRefCount() :bat[:int,:int]
address CMDbbpRefCount comment "Create a BAT with the (hard) reference
counts";

command getLRefCount() :bat[:int,:int]
address CMDbbpLRefCount comment "Create a BAT with the logical reference
counts";

command getLocation() :bat[:int,:str]
address CMDbbpLocation comment "Create a BAT with their disk locations";

command getHeat() :bat[:int,:int]
address CMDbbpHeat comment "Create a BAT with the heat values";

command getDirty() :bat[:int,:str]
address CMDbbpDirty comment "Create a BAT with the dirty/ diffs/clean
status";

command getStatus() :bat[:int,:str]
address CMDbbpStatus comment "Create a BAT with the disk/load status";

command getKind():bat[:int,:str]
address CMDbbpKind comment "Create a BAT with the persistency status";

command getRefCount(b:bat[:any_1,:any_2]) :int
address CMDgetBATrefcnt comment "Utility for debugging MAL interpreter";

command getLRefCount(b:bat[:any_1,:any_2]) :int
address CMDgetBATlrefcnt comment "Utility for debugging MAL interpreter";

Chapter 8: The MAL Modules 120

command getDiskSpace() :lng
address CMDbbpDiskSpace comment "Estimate the amount of disk space oc-
cupied by dbfarm";

command getPageSize():int
address CMDgetPageSize comment "Obtain the memory page size";

8.5 Constants

The const module provides a box abstraction store for global constants. Between sessions,
the value of the constants is saved on disk in the form of a simple MAL program, which is
scanned and made available by opening the box. A future implementation should provide
transaction support over the box, which would permit multiple clients to exchange (scalar)
information easily.

The default constant box is initialized with session variables, such as ’user’,’dbname’,
’dbfarm’, and ’dbdir’. These actions are encapsulated in the prelude routine called.

A box should be opened before being used. It is typically used to set-up the list of
current users and to perform authorization. The constant box is protected with a simple
authorization scheme, prohibiting all updates unless issued by the system administrator.

module const;

pattern open():void
address CSTopen comment "Locate and open the constant box.";

pattern close():void
address CSTclose comment "Close the constant box.";

pattern destroy():void
address CSTdestroy comment "Destroy the box.";

pattern take(name:str):any_1
address CSTtake comment "Take a variable out of the box.";

pattern deposit(name:str,val:any_1) :void
address CSTdeposit comment "Add a variable to the box.";

pattern releaseAll():void
address CSTreleaseAll comment "Release all variables in the box.";

pattern release(name:str) :void
address CSTrelease comment "Release a constant value.";

pattern release(name:any_1):void
address CSTrelease comment "Release a constant value.";

pattern toString(name:any_1):str
address CSTtoString comment "Get the string representation of an element in
the box.";

pattern discard(name:any_1) :void
address CSTdiscard comment "Release the const from the box.";

pattern newIterator()(:lng,:str)
address CSTnewIterator comment "Locate next element in the box.";

Chapter 8: The MAL Modules 121

pattern hasMoreElements()(:lng,:str)
address CSThasMoreElements comment "Locate next element in the box.";

8.6 BAT Iterators

Many low level algorithms rely on an iterator to break a collection into smaller pieces. Each
piece is subsequently processed by a block.

For very large BATs it may make sense to break it into chunks and process them sepa-
rately to solve a query. An iterator pair is provided to chop a BAT into fixed size elements.
Each chunk is made available as a BATview. It provides read-only access to an underlying
BAT. Adjusting the bounds is cheap, once the BATview descriptor has been constructed.

The smallest granularity is a single BUN, which can be used to realize an iterator over
the individual BAT elements. For larger sized chunks, the operators return a BATview.

All iterators require storage space to administer the location of the next element. The
BAT iterator module uses a simple lng variable, which also acts as a cursor for barrier
statements.

The larger chunks produced are currently static, i.e. their size is a parameter of the call.
Dynamic chunk sizes are interesting for time-series query processing. (See another module)

command bat.newIterator(b:bat[:any_1,:any_2], size:lng)
(:lng,:bat[:any 1,:any 2]) address CHPnewChunkIterator comment "Create an
iterator with fixed granule size. The result is a view.";

command bat.hasMoreElements(b:bat[:any_1,:any_2], size:lng)
(:lng, :bat[:any 1,:any 2]) address CHPhasMoreElements comment "Produce
the next chunk for processing.";

pattern bat.newIterator(b:bat[:any_1,:any_2]) (:lng, h:any_1, t:any_2)
address CHPbunIterator comment "Process the buns one by one extracted from
a void table.";

pattern bat.newIterator(b:bat[:any_1,:bat]) (:lng, h:any_1, t:any_2)
address CHPbunIterator comment "Process the buns one by one extracted from
a void table.";

pattern bat.hasMoreElements(b:bat[:any_1,:any_2]) (:lng, h:any_1, t:any_2)
address CHPbunHasMoreElements;

pattern bat.hasMoreElements(b:bat[:oid,:any_2]) (:lng, h:oid, t:any_2)
address CHPbunHasMoreElements comment "Produce the next bun for pro-
cessing.";

pattern bat.hasMoreElements(b:bat[:any_1,:bat]) (:lng, h:any_1, t:any_2)
address CHPbunHasMoreElements comment "Produce the next bun for pro-
cessing.";

The head and tail values can also be extracted using the cursor. It points to the first
bun in the chunk under consideration. It is often more effective due to use the iterator with
automatic extraction of head and tail value; the overhead involved is much less.

pattern bat.getHead(b:bat[:any_1,:any],i:lng):any_1
address CHPgetHead comment "return the BUN head value using the cursor.";

Chapter 8: The MAL Modules 122

pattern bat.getTail(b:bat[:any_2,:any_1],i:lng):any_1
address CHPgetTail comment "return the BUN tail value using the cursor.";

8.7 Box definitions

This module shows the behavior of a simple box of objects. Objects are stored into the box
using deposit and taken out with take. Once you are done, elements can be removed by
name or reference using discard.

A box should be opened before being used. It is typically used to set-up the list of
current users and to perform authorization.

module box;

pattern open(nme:str):any_1
address BOXopen comment "Locate the box and open it.";

pattern close(bname:str):void
address BOXclose comment "Close the box.";

pattern destroy(bname:str):void
address BOXdestroy comment "Destroy the box.";

pattern take(bnme:str, vnme:str):any_1
address BOXtake comment "Locate the typed value in the box.";

pattern deposit(bname:str,name:str,v:any_1):void
address BOXdeposit comment "Enter a new value into the box.";

pattern releaseAll(bname:str) :void
address BOXreleaseAll comment "Release all objects for this client.";

pattern release(bname:str,nme:str,val:any_1):void
address BOXrelease comment "Release the BAT from the client pool.";

pattern toString(bname:str,name:str) :str
address BOXtoString comment "Get the string representation of the i-th ele-
ment in the box.";

pattern discard(bname:str,name:str) :void
address BOXdiscard comment "Release the BAT from the client pool.";

pattern iterator(nme:str):lng
address BOXiterator comment "Locates the next element in the box.";

command getBoxNames():bat[:int,:str]
address BOXgetBoxNames comment "Retrieve the names of all boxes.";

8.8 Client Management

Each online client is represented with an entry in the clients table. The client may inspect
his record at run-time and partially change its properties. The administrator sees all client
records and has the right to adjust global properties.

module clients;

Chapter 8: The MAL Modules 123

pattern setListing(flag:int):int
address CLTsetListing comment "Turn on/off echo of MAL instructions: 2 -
show mal instruction, 4 - show details of type resolutoin, 8 - show binding
information.";

pattern setHistory(s:str)
address CLTsetHistory comment "Designate console history file for readline.";

pattern getId():int
address CLTgetClientId comment "Return a number that uniquely represents
the current client.";

pattern getInfo():bat[:str,:str]
address CLTInfo comment "Pseudo bat with client attributes.";

pattern getScenario():str
address CLTgetScenario comment "Retrieve current scenario name.";

pattern setScenario(msg:str):str
address CLTsetScenario comment "Switch to other scenario handler, return
previous one.";

pattern quit():void
address CLTquit comment "Terminate the client session.";

pattern quit(idx:int):void
address CLTquit comment "Terminate the session for a single client using a
soft error. It is the privilige of the console user.";

Administrator operations

command getLogins():bat[:int,:str]
address CLTLogin comment "Pseudo bat of client login time.";

command getLastCommand():bat[:int,:str]
address CLTLastCommand comment "Pseudo bat of client’s last command
time.";

command getActions():bat[:int,:int]
address CLTActions comment "Pseudo bat of client’s command counts.";

command getTime():bat[:int,:lng]
address CLTTime comment "Pseudo bat of client’s total time usage(in usec).";

command getUsers():bat[:int,:str]
address CLTusers comment "Pseudo bat of users logged in.";

pattern stop(id:int)
address CLTstop comment "Stop the query execution at the next eligble state-
ment.";

pattern suspend(id:int):void
address CLTsuspend comment "Put a client process to sleep for some time. It
will simple sleep for a second at a time, until the awake bit has been set in its
descriptor";

Chapter 8: The MAL Modules 124

command wakeup(id:int):void
address CLTwakeup comment "Wakeup a client process";

pattern setTimeout(q:int,s:int):void
address CLTsetTimeout comment "Abort a query after q seconds (q=0 means
run undisturbed). The session timeout aborts the connection after spending
too many seconds on query processing.";

pattern getTimeout()(q:int,s:int)
address CLTgetTimeout comment "A query is aborted after q seconds (q=0
means run undisturbed). The session timeout aborts the connection after
spending too many seconds on query processing.";

command shutdown(forced:bit):void
address CLTshutdown comment "Close all client connections. If forced=false
the clients are moved into FINISHING mode, which means that the process
stops at the next cycle of the scenario. If forced=true all client processes are
immediately killed";

8.9 Factory management

The factory infrastructure can be inspected and steered with the commands provided here.

module factories;

command getPlants()(mod:bat[:oid,:str], fcn:bat[:oid,:str])
address FCTgetPlants comment "Retrieve the names for all active factories.";

command getCaller():int
address FCTgetCaller comment "Retrieve the unique identity of the factory
caller.";

command getOwners():bat[:oid,:str]
address FCTgetOwners comment "Retrieve the factory owners table.";

command getArrival():bat[:oid,:timestamp]
address FCTgetArrival comment "Retrieve the time stamp the last call was
made.";

command getDeparture():bat[:oid,:timestamp]
address FCTgetDeparture comment "Retrieve the time stamp the last answer
was returned.";

pattern shutdown(m:str, f:str):void
address FCTshutdown comment "Close a factory.";

8.10 Inspection

This module introduces a series of commands that provide access to information stored
within the interpreter data structures. It’s primary use is debugging. In all cases, the
pseudo BAT operation is returned that should be garbage collected after being used.

The main performance drain would be to use a pseudo BAT directly to successively
access it components. This can be avoided by first assigning the pseudo BAT to a variable.

Chapter 8: The MAL Modules 125

module inspect;

command getWelcome():str
address INSPECTgetWelcome comment "Return the server message of the day
string";

pattern getDefinition(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetDefinition comment "Returns a string representation of a
specific function.";

pattern getSignature(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetSignature comment "Returns the function signature(s).";

pattern getAddress(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetAddress comment "Returns the function signature(s).";

pattern getComment(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetComment comment "Returns the function help informa-
tion.";

pattern getSource(mod:str,fcn:str):str
address INSPECTgetSource comment "Return the original input for a func-
tion.";

pattern getKind():bat[:oid,:str]
address INSPECTgetkind comment "Obtain the instruction kind.";

pattern getModule():bat[:oid,:str]
address INSPECTgetAllModules comment "Obtain the function name.";

pattern getFunction():bat[:oid,:str]
address INSPECTgetAllFunctions comment "Obtain the function name.";

pattern getSignatures():bat[:oid,:str]
address INSPECTgetAllSignatures comment "Obtain the function signatures.";

pattern getAddresses():bat[:oid,:str]
address INSPECTgetAllAddresses comment "Obtain the function address.";

pattern getSize():lng
address INSPECTgetSize comment "Return the storage size for the current
function (in bytes).";

pattern getSize(mod:str):bat[:str,:lng]
address INSPECTgetModuleSize comment "Return the storage size for a mod-
ule (in bytes).";

pattern getSize(mod:str,fcn:str):lng
address INSPECTgetFunctionSize comment "Return the storage size for a func-
tion (in bytes).";

pattern getType(v:bat[:any_1,:any_2]) (ht:str, tt:str)
address INSPECTtypeName comment "Return the concrete type of a variable
(expression).";

Chapter 8: The MAL Modules 126

pattern getType(v:any_1) :str
address INSPECTtypeName comment "Return the concrete type of a variable
(expression).";

command getTypeName(v:int):str
address INSPECTtypename comment "Get the type name associated with a
type id.";

pattern getTypeIndex(v:bat[:any_1,:any_2]) (ht:int, tt:int)
address INSPECTtypeIndex comment "Return the type index of a BAT head
and tail.";

pattern getTypeIndex(v:any_1):int
address INSPECTtypeIndex comment "Return the type index of a variable.
For BATs, return the type index for its tail.";

pattern equalType(l:any, r:any):bit
address INSPECTequalType comment "Return true if both operands are of the
same type";

command getAtomNames():bat[:int,:str]
address INSPECTatom names comment "Collect a BAT with the atom
names.";

command getAtomSuper():bat[:int,:str]
address INSPECTatom sup names comment "Collect a BAT with the atom
names.";

command getAtomSizes():bat[:int,:int]
address INSPECTatom sizes comment "Collect a BAT with the atom sizes.";

command getEnvironment():bat[:str,:str]
address INSPECTgetEnvironment comment "Collect the environment
variables.";

8.11 Input/Output module

The IO module provides simple ascii-io rendering options. It is modeled after the tuple
formats, but does not attempt to outline the results. Instead, it is geared at speed, which
also means that some functionality regarding the built-in types is duplicated from the atoms
definitions.

A functional limited form of formatted printf is also provided. It accepts at most one
variable. A more complete approach is the tablet module.

The commands to load and save a BAT from/to an ASCII dump are efficient, but work
only for binary tables.

module io;

pattern stdin():bstream
address io stdin comment "return the input stream to the database client";

pattern stderr():streams
address io stderr comment "return the error stream for the database console";

Chapter 8: The MAL Modules 127

pattern stdout():streams
address io stdout comment "return the output stream for the database client";

pattern print(val:any_1,lst:any...):void
address IOprint val comment "Print a MAL value tuple .";

pattern print(b1:bat[:any_1,:any]...):void
address IOtable comment "BATs are printed with ’#’ for legend lines, and
the BUNs on seperate lines between brackets, containing each to comma sepa-
rated values (head and tail). If multiple BATs are passed for printing, print()
performs an implicit natural join, producing a multi attribute table.";

pattern ftable(filep:streams, b1:bat[:any_1,:any], b:bat[:any_1,:any]...
):void

address IOftable comment "Print an n-ary table to a file.";

pattern print(order:int,b:bat[:any_1,:any], b2:bat[:any_1,:any]...):void
address IOotable comment "The same as normal table print, but enforces to
use the order of BAT number [1..argc] to do the printing.";

pattern table(b1:bat[:any_1,:any], b2:bat[:any_1,:any]...):void
address IOttable comment "Print an n-ary table. Like print, but does not print
oid column";

pattern table(order:int, b1:bat[:any_1,:any], b2:bat[:any_1,:any]...):void
address IOtotable comment "Print an n-ary table.";

pattern ftable(fp:streams, order:int, b1:bat[:any_1,:any],
b:bat[:any_1,:any]...):void

address IOfotable comment "Print an n-ary table to a file.";

pattern print(val:any_1):void
address IOprint val comment "Print a MAL value tuple .";

pattern print(val:bat[:any_1,:any_2]):void
address IOprint val comment "Print a MAL value tuple .";

pattern prompt(val:any_1):void
address IOprompt val comment "Print a MAL value without brackets.";

pattern printf(fmt:str,val:any...):void
address IOprintf comment "Select default format ";

pattern printf(fmt:str):void
address IOprintf comment "Select default format ";

pattern printf(filep:streams,fmt:str,val:any...):void
address IOprintfStream comment "Select default format ";

pattern printf(filep:streams,fmt:str):void
address IOprintfStream comment "Select default format ";

command data(fname:str):str
address IOdatafile comment "Signals receipt of tuples in a file fname. It returns
the name of the file, if it still exists.";

Chapter 8: The MAL Modules 128

command export(b:bat[:any_1,:any_2], filepath:str):bit
address IOexport comment "Export a BAT as ASCII to a file. If the ’filepath’
is not absolute, it is put into the .../dbfarm/$DB directory. Success of failure
is indicated.";

command import(b:bat[:any_1,:any_2], filepath:str) :bat[:any_1,:any_2]
address IOimport comment "Import a BAT from an ASCII dump. The new tu-
ples are *inserted* into the parameter BAT. You have to create it! Its signature
must match the dump, else parsing errors will occur and FALSE is returned.";

8.12 Language Extensions

Iterators over scalar ranges are often needed, also at the MAL level. The barrier and control
primitives are sufficient to mimic them directly.

The modules located in the kernel directory should not rely on the MAL datastructures.
That’s why we have to deal with some bat operations here and delegate the signature to
the proper module upon loading.

Running a script is typically used to initialize a context. Therefore we need access to
the runtime context. For the call variants we have to determine an easy way to exchange
the parameter/return values.

module language;

command newRange(v:oid)(:bit,:oid)
address RNGnewRange oid;

command newRange(v:sht)(:bit,:sht)
address RNGnewRange sht;

command newRange(v:int)(:bit,:int)
address RNGnewRange int;

command newRange(v:lng)(:bit,:lng)
address RNGnewRange lng;

command newRange(v:flt)(:bit,:flt)
address RNGnewRange flt;

command newRange(v:dbl)(:bit,:dbl)
address RNGnewRange dbl comment "This routine introduces an iterator over
a scalar domain.";

command nextElement(step:oid,last:oid)(:bit,:oid)
address RNGnextElement oid;

command nextElement(step:sht,last:sht)(:bit,:sht)
address RNGnextElement sht;

command nextElement(step:int,last:int)(:bit,:int)
address RNGnextElement int;

command nextElement(step:lng,last:lng)(:bit,:lng)
address RNGnextElement lng;

Chapter 8: The MAL Modules 129

command nextElement(step:flt,last:flt)(:bit,:flt)
address RNGnextElement flt;

command nextElement(step:dbl,last:dbl)(:bit,:dbl)
address RNGnextElement dbl comment "Advances the iterator with a fixed
value until it becomes >= last.";

command raise(msg:str) :str
address CMDraise comment "Raise an exception labeled with a specific mes-
sage.";

command assert(v:bit,term:str):void
address MALassertBit;

command assert(v:sht,term:str):void
address MALassertSht;

command assert(v:int,term:str):void
address MALassertInt;

command assert(v:lng,term:str):void
address MALassertLng;

command assert(v:str,term:str):void
address MALassertStr;

command assert(v:oid,term:str):void
address MALassertOid;

pattern assert(v:any_1,pname:str,oper:str,val:any_2):void
address MALassertTriple comment "Assertion test.";

pattern assertSpace(depth:int)
address safeguardStack comment "Ensures that the current call does not con-
sume more than depth*vtop elements on the stack.";

pattern dataflow():int
address MALstartDataflow comment "The current guarded block is executed
using dataflow control. ";

pattern register(m:str,f:str,code:str,help:str):void
address CMDregisterFunction comment"Compile the code string and register
it as a MAL function.";

pattern setMemoryTrace(flg:bit):void
address CMDsetMemoryTrace comment "Set the flag to trace the memory foot-
print";

pattern setThreadTrace(flg:bit):void
address CMDsetThreadTrace comment "Set the flag to trace the interpreter
threads";

pattern setTimerTrace(flg:bit):void
address CMDsetTimerTrace comment "Set the flag to trace the execution
time";

Chapter 8: The MAL Modules 130

pattern setIOTrace(flg:bit):void
address CMDsetIOTrace comment "Set the flag to trace the IO";

pattern call(s:str):void
address CMDcallString comment "Evaluate a MAL string program.";

pattern call(s:bat[:oid,:str]):void
address CMDcallBAT comment "Evaluate a program stored in a BAT.";

pattern source(f:str):void
address CMDevalFile comment "Merge the instructions stored in the file with
the current program.";

8.13 MAL debugger interface

This module provides access to the functionality offered by the MonetDB debugger and
interpreter status. It is primarilly used in interactive sessions to activate the debugger
at a given point. Furthermore, the instructions provide the necessary handle to generate
information for post-mortum analysis.

To enable ease of debugging and performance monitoring, the MAL interpreter comes
with a hardwired gdb-like text-based debugger. A limited set of instructions can be included
in the programs themselves, but beware that debugging has a global effect. Any concurrent
user will be affected by breakpoints being set.

The prime scheme to inspect the MAL interpreter status is to use the MAL debugger
directly. However, in case of automatic exception handling it helps to be able to obtain
BAT versions of the critical information, such as stack frame table, stack trace, and the
instruction(s) where an exception occurred. The inspection typically occurs in the exception
handling part of the MAL block.

Beware, a large class of internal errors can not easily captured this way. For example,
bus-errors and segmentation faults lead to premature termination of the process. Similar,
creation of the post-mortum information may fail due to an inconsistent state or insufficient
resources.

module mdb;

pattern start():void
address MDBstart comment "Start interactive debugger";

pattern start(clientid:int):void
address MDBstart comment "Start interactive debugger on a client";

pattern start(mod:str,fcn:str):void
address MDBstartFactory comment "Start interactive debugger on a running
factory";

pattern stop():void
address MDBstop comment "Stop the interactive debugger";

pattern inspect(mod:str,fcn:str):void
address MDBinspect comment "Run the debugger on a specific function";

command modules():bat[:int,:str]
address CMDmodules comment "List available modules";

Chapter 8: The MAL Modules 131

pattern setTrap(mod:str, fcn:str, b:bit):void
address MDBtrapFunction comment "Suspend upon a call to the MAL func-
tion.";

pattern setTrap(idx:int):void
address mdbTrapClient comment "Call debugger for a specific process.";

pattern setTrace(b:bit):void
address MDBsetTrace comment "Turn on/off tracing of current routine";

pattern setTrace(b:str):void
address MDBsetVarTrace comment "Turn on/off tracing of a variable ";

pattern setCatch(b:bit):void
address MDBsetCatch comment "Turn on/off catching exceptions";

pattern setThread(b:bit):void
address MDBsetThread comment "Turn on/off thread identity for debugger";

pattern setTimer(b:bit):void
address MDBsetTimer comment "Turn on/off performance timer for debugger";

pattern setMemoryTrace(b:bit):void
address MDBsetBigfoot comment "Turn on/off memory foot print tracer for
debugger";

pattern setFlow(b:bit):void
address MDBsetFlow comment "Turn on/off memory flow debugger";

pattern setMemory(b:bit):void
address MDBsetMemory comment "Turn on/off memory statistics tracing.";

pattern setIO(b:bit):void
address MDBsetIO comment "Turn on/off io statistics tracing";

pattern setCount(b:bit):void
address MDBsetCount comment "Turn on/off bat count statistics tracing";

command getDebug():int
address MDBgetDebug comment "Get the kernel debugging bit-set. See the
MonetDB configuration file for details";

command setDebug(flg:str):int
address MDBsetDebugStr comment "Set the kernel debugging bit-set and re-
turn its previous value. The recognized options are: threads, memory, proper-
ties, io, transactions, modules, algorithms, estimates, xproperties";

command setDebug(flg:int):int
address MDBsetDebug comment "Set the kernel debugging bit-set and return
its previous value.";

command getException(s:str):str
address MDBgetExceptionVariable comment "Extract the variable name from
the exception message";

Chapter 8: The MAL Modules 132

command getReason(s:str):str
address MDBgetExceptionReason comment "Extract the reason from the ex-
ception message";

command getContext(s:str):str
address MDBgetExceptionContext comment "Extract the context string from
the exception message";

pattern list():void
address MDBlist comment "Dump the current routine on standard out.";

pattern listMapi():void
address MDBlistMapi comment "Dump the current routine on standard out
with Mapi prefix.";

pattern list(M:str,F:str):void
address MDBlist3 comment "Dump the routine M.F on standard out.";

pattern List():void
address MDBlistDetail comment "Dump the current routine on standard out.";

pattern List(M:str,F:str):void
address MDBlist3Detail comment "Dump the routine M.F on standard out.";

pattern var():void
address MDBvar comment "Dump the symboltable of current routine on stan-
dard out.";

pattern var(M:str,F:str):void
address MDBvar3 comment "Dump the symboltable of routine M.F on standard
out.";

pattern lifespan(M:str,F:str):void
address MDBlifespan comment "Dump the current routine lifespan information
on standard out.";

pattern grab():void
address mdbGrab comment "Call debugger for a suspended process.";

pattern trap():void
address mdbTrap comment "A suspended process for debugging.";

pattern dot(M:str,F:str,s:str):void
address MDBshowFlowGraph comment "Dump the data flow of the function
M.F in a format recognizable by the command ’dot’ on the file s";

pattern getStackDepth():int
address MDBStkDepth comment "Return the depth of the calling stack.";

pattern getStackFrame(i:int):bat[:str,:str]
address MDBgetStackFrameN;

pattern getStackFrame():bat[:str,:str]
address MDBgetStackFrame comment "Collect variable binding of current (n-
th) stack frame.";

Chapter 8: The MAL Modules 133

pattern getStackTrace():bat[:void,:str]
address MDBStkTrace;

pattern dump()
address MDBdump comment "Dump instruction, stacktrace, and stack";

pattern getDefinition():bat[:void,:str]
address MDBgetDefinition comment "Returns a string representation of the
current function with typing information attached";

8.14 Manual Inspection

This module introduces a series of commands that provide access to the help information
stored in the runtime environment.

The manual bulk operations ease offline inspection of all function definitions. It in-
cludes an XML organized file, because we expect external tools to massage it further for
presentation.

module manual;

pattern help(text:str)
address MANUALhelp comment "Produces a list of all <module>.<function>
that match the text pattern. The wildcard ’*’ can be used for <module> and
<function>. Using the ’(’ asks for signature information and using ’)’ asks for
the complete help record.";

pattern search(text:str)
address MANUALsearch comment "Search the manual for command descrip-
tions that match the regular expression ’text’";

pattern createXML(mod:str):void
address MANUALcreate1 comment "Generate a synopsis of a module";

pattern createXML():void
address MANUALcreate0 comment "Produces a XML-formatted manual over
all modules loaded.";

pattern section(mod:str):void
address MANUALcreateSection comment "Generate a synopsis of a module for
the reference manual";

pattern index():void
address MANUALcreateIndex comment "Produces an overview of all names
grouped by module.";

pattern summary():void
address MANUALcreateSummary comment "Produces a manual with help lines
grouped by module.";

pattern completion(pat:str):bat[:int,:str]
address MANUALcompletion comment "Produces the wordcompletion table.";

Chapter 8: The MAL Modules 134

8.15 MAPI interface

The complete Mapi library is available to setup communication with another Mserver.
Clients may initialize a private listener to implement specific services. For example, in

an OLTP environment it may make sense to have a listener for each transaction type, which
simply parses a sequence of transaction parameters.

Authorization of access to the server is handled as part of the client record initialization
phase.

This library internally uses pointer handles, which we replace with an index in a locally
maintained table. It provides a handle to easily detect havoc clients.

A cleaner and simplier interface for distributed processing is available in the module
remote.

module mapi;

command listen():int
address SERVERlisten default comment "Start a Mapi server with the default
settings.";

command listen(port:int):int
address SERVERlisten port comment "Start a Mapi listener on the port
given.";

command listen(port:int, maxusers:int):int
address SERVERlisten2 comment "Start a Mapi listener.";

command listen(port:int, maxusers:int, cmd:str):int
address SERVERlisten3 comment "Start the Mapi listener on <port> for
<maxusers>. For a new client connection MAL procedure <cmd>(Stream s in,
Stream s out) is called.If no <cmd> is specified a new client thread is forked.";

command stop():void
address SERVERstop comment "Terminate connection listeners.";

command suspend():void
address SERVERsuspend comment "Suspend accepting connections.";

command resume():void
address SERVERresume comment "Resume connection listeners.";

command malclient(in:streams, out:streams):void
address SERVERclient comment "Start a Mapi client for a particular stream
pair.";

command trace(mid:int,flag:int):void
address SERVERtrace comment "Toggle the Mapi library debug tracer.";

pattern reconnect(host:str, port:int, usr:str, passwd:str,lang:str):int
address SERVERreconnectWithoutAlias comment "Re-establish connection
with a remote mserver.";

pattern reconnect(host:str, port:int, db_alias:str, usr:str,
passwd:str,lang:str):int

address SERVERreconnectAlias comment "Re-establish connection with a re-
mote mserver.";

Chapter 8: The MAL Modules 135

command reconnect(mid:int):void
address SERVERreconnect comment "Re-establish a connection.";

pattern connect(host:str, port:int, usr:str, passwd:str,lang:str):int
address SERVERconnect comment "Establish connection with a remote
mserver.";

command disconnect(dbalias:str):int
address SERVERdisconnectWithAlias comment "Close connection with a re-
mote Mserver.";

command disconnect():int
address SERVERdisconnectALL comment "Close connections with all remote
Mserver.";

command setAlias(dbalias:str)
address SERVERsetAlias comment "Give the channel a logical name.";

command lookup(dbalias:str):int
address SERVERlookup comment "Retrieve the connection identifier.";

command disconnect(mid:int):void
address SERVERdisconnect comment "Terminate the session.";

command destroy(mid:int):void
address SERVERdestroy comment "Destroy the handle for an Mserver.";

command ping(mid:int):int
address SERVERping comment "Test availability of an Mserver.";

command query(mid:int, qry:str):int
address SERVERquery comment "Sent the query for execution";

command query_handle(mid:int, qry:str):int
address SERVERquery handle comment "Sent the query for execution.";

pattern query_array(mid:int, qry:str, arg:str...):int
address SERVERquery array comment "Sent the query for execution replacing
’?’ by arguments.";

command prepare(mid:int, qry:str):int
address SERVERprepare comment "Prepare a query for execution.";

command finish(hdl:int):int
address SERVERfinish comment "Remove all remaining answers.";

command get_field_count(hdl:int):int
address SERVERget field count comment "Return number of fields.";

command get_row_count(hdl:int):lng
address SERVERget row count comment "Return number of rows.";

command rows_affected(hdl:int):lng
address SERVERrows affected comment "Return number of affected rows.";

command fetch_row(hdl:int):int
address SERVERfetch row comment "Retrieve the next row for analysis.";

Chapter 8: The MAL Modules 136

command fetch_all_rows(hdl:int):lng
address SERVERfetch all rows comment "Retrieve all rows into the cache.";

command fetch_field(hdl:int,fnr:int):str
address SERVERfetch field str comment "Retrieve a single field.";

command fetch_field(hdl:int,fnr:int):int
address SERVERfetch field int comment "Retrieve a single int field.";

command fetch_field(hdl:int,fnr:int):lng
address SERVERfetch field lng comment "Retrieve a single lng field.";

command fetch_field(hdl:int,fnr:int):sht
address SERVERfetch field sht comment "Retrieve a single sht field.";

command fetch_field(hdl:int,fnr:int):void
address SERVERfetch field void comment "Retrieve a single void field.";

command fetch_field(hdl:int,fnr:int):oid
address SERVERfetch field oid comment "Retrieve a single void field.";

command fetch_field(hdl:int,fnr:int):chr
address SERVERfetch field chr comment "Retrieve a single chr field.";

command fetch_field_array(hdl:int):bat[:int,:str]
address SERVERfetch field bat comment "Retrieve all fields for a row.";

command fetch_line(hdl:int):str
address SERVERfetch line comment "Retrieve a complete line.";

command fetch_reset(hdl:int):int
address SERVERfetch reset comment "Reset the cache read line.";

command next_result(hdl:int):int
address SERVERnext result comment "Go to next result set.";

command error(mid:int):int
address SERVERerror comment "Check for an error in the communication.";

command getError(mid:int):str
address SERVERgetError comment "Get error message.";

command explain(mid:int):str
address SERVERexplain comment "Turn the error seen into a string.";

pattern put(mid:int, nme:str, val:any_1):void
address SERVERput comment "Send a value to a remote site.";

pattern put(nme:str, val:any_1):str
address SERVERputLocal comment "Prepare sending a value to a remote site.";

pattern rpc(key:int,qry:str...):any
address SERVERmapi rpc single row comment "Sent a simple query for exe-
cution and fetch result.";

pattern rpc(key:int,qry:str):bat[:any_1,:any_2]
address SERVERmapi rpc bat;

Chapter 8: The MAL Modules 137

command rpc(key:int,qry:str):void
address SERVERquery comment "Sent a simple query for execution.";

pattern
bind(key:int,rschema:str,rtable:str,rcolumn:str,i:int):bat[:any_1,:any_2]

address SERVERbindBAT comment "Bind a remote variable to a local one.";

pattern bind(key:int,rschema:str,rtable:str,i:int):bat[:any_1,:any_2]
address SERVERbindBAT comment "Bind a remote variable to a local one.";

pattern bind(key:int,remoteName:str):bat[:any_1,:any_2]
address SERVERbindBAT comment "Bind a remote variable to a local one.";
mapi.listen();

8.16 Multiple association tables

A MAT is a convenient way to deal represent horizontal fragmented tables. It combines the
definitions of several, type compatible BATs under a single name. It is produced by the
mitosis optimizer and the operations are the target of the mergetable optimizer.

The MAT is materialized when the operations can not deal with the components indi-
vidually, or the incremental operation is not supported. Normally all mat.new() operations
are removed by the mergetable optimizer. In case a mat.new() is retained in the code, then
it will behaves as a mat.pack();

The primitives below are chosen to accomodate the SQL front-end to produce reasonable
efficient code.

module mat;

pattern new(b:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATpack comment "Define a Merge Association Table (MAT). Faal
back to the pack operation when this is called ";

pattern pack(:any_2...):bat[:void,:any_2]
address MATpackValues comment "Materialize the MAT (of values) into a
BAT";

pattern pack(b:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATpack comment "Materialize the MAT into a BAT";

pattern pack2(b:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATpack2 comment "Materialize the MAT into a BAT (by an append
all)";

pattern print(b:bat[:any_1,:any_2]...):void
address MATprint;

pattern newIterator(grp:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATnewIterator comment "Create an iterator over a MAT";

pattern hasMoreElements(grp:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MAThasMoreElements comment "Find the next element in the merge
table";

Chapter 8: The MAL Modules 138

command info(g:str, e:str):bat[:any_1,:any_2]
address MATinfo comment "retrieve the definition from the partition cata-
logue";

8.17 BAT Partition Manager

In real-life database applications the BATs tend to grow beyond the memory size. This leads
to a heavy IO dominated behavior, which can partly be avoided by breaking up the query
into a sequence of subqueries using a map-reduce strategy. The BAT partition manager
(BPM) module is designed to support this strategy using range- and hash-partitioning.

Consider we want to reorganize R:bat[:oid,:int] into two partitions, based on splitting by
tail value. The following MAL program illustrates the snippet of actions needed:

bpm.open(); Ralias:= bpm.deposit("myversion",R:bat[:oid,:int]);
bpm.rangePartition(Ralias,nil:int,100); bpm.rangePartition(Ralias,101,200);
bpm.close();

The command bpm.deposit registers a BAT as one for which a partitioned copy is
required. The first partition call breaks the orginal BAT into two pieces: (nil:int,100) and
(101,nil:int). The second call breaks the latter into (101,200) and (201,nil:int). The BAT
partitions share the persistency properties. Partitioning on the head simple calls for a
reverse operation on the source BAT first.

The partition manager also supports hash-based partitioning. Its argument is the num-
ber of hash bucket bits.

bpm.open(); Rev:= bat.reverse(R:bat[:oid,:int]); Ralias:= bpm.deposit("myHashVersion",Rev);
creates side effects bpm.hashPartition(Ralias,2); bpm.close();

This example creates a hash-partition based on the head.
The design is based on the assumption that partitions are reasonably large. This helps

to limit plan explosion. (or a scheduler should step in)

8.17.1 Derived partitioning

A relational front-end would benefit from derived horizontal fragmentation. It would enable
grouping together related fragments on the same site. Assume a relation R(A,B) which is
already partitioned on A the derived fragmentation on the head is enforced with

bpm.derivePartition(B,A);

8.17.2 Using partitions

The partitioned BAT can be used in two ways. A query plan can be rewritten into a
generator over the partitions, or it can be used by optimizers to derived all subqueries first
for symbolic evaluation.

The former is illustrated with the snippet to select part of a partitioned BAT. In this
example we collect the partial results in the accumulator BAT U.

bpm.open(); Ralias:bat[:oid,:int]:= bpm.take("myversion"); U:=
bat.new(:oid,:int); barrier Rp:= bpm.newIterator(Ralias); ... t:=
algebra.select(Rp,0,100); U:= algebra.union(tu,t); ... redo Rp:=
bpm.hasMoreElements(Ralias); exit Rp; bpm.close();

Chapter 8: The MAL Modules 139

The properties of the partitioned BATs are particularly useful during query optimization.
However, it only works if the BAT identifier can be determined at compile time. For SQL
it can be simply looked up in the catalog as part of a preparatory optimizer step.

To illustrate, the same problem handled by an optimizer that produces the plan based
on a known number of partitions:

bpm.open(); R:bat[:oid,:int]:= bpm.take("myversion"); # get the partition
alias optimizer.mergetable(); T:= algebra.select(R,0,100);

is translated to the plan:

bpm.open(); R:bat[:oid,:int]:= bpm.take("myversion"); # get the
partition alias R0:bat[:oid,:int]:= bpm.take(R,0, nil:oid,nil:oid, 0,100);
R1:bat[:oid,:int]:= bpm.take(R,1, nil:oid,nil:oid, 101,200); R2:bat[:oid,:int]:=
bpm.take(R,2, nil:oid,nil:oid, 201,nil:int); R:= mat.new(R0,R1,R2); T:=
algebra.select(R,0,100); optimizer.multitable();

In this translation Ri also gets the properties of the BATs. It is now up to the mat
optimizer to decide about further plan expansion or an iterator approach.

8.17.3 Partition updates

The content of the partitions is preferrable updated in bulk. This calls for accumulation
of insertions/deletions in pending update BATs, as already performed in the SQL code
generator. Once the transaction is commited, the updates are propagated (in parallel) to
all partitions.

bpm.open(); Ralias:bat[:oid,:int] := bpm.take("myversion"); bpm.insert(Ralias,
Rinsert);# handle pending inserts bpm.delete(Ralias, Rdelete);# handle
pending deletes bpm.replace(Ralias, Rold, Rnew);# handle pending updates
bpm.close();

The replace operator works on the assumption that the head of Rold and Rnew is
unique.

It remains possible to retrieve a partition and directly insert elements, but then it is up
to the compiler to ensure that the boundery conditions are met.

8.17.4 Partitioned results

In many situations, you would like to keep the partial results as a partitioned BAT again.
The easiest solution is to create a partitioned BAT, whose partitions are empty. Subse-
quently, we insert the temporary results. Depending on the fragmentation criteria, pieces
may align with the pieces known, or lead to a redistribution of the buns to the correct bats.

In the previous plan for this becomes

bpm.open(); Tmp := bpm.deposit("tmp",:bat[:oid,:int]); bpm.rangePartition(tmp,nil:int,100);
bpm.rangePartition(tmp,101,nil:int);
Ralias:bat[:oid,:int]:= bpm.take("myversion"); # get the partition alias
R0:bat[:oid,:int]:= bpm.take("myversion", nil:oid,nil:oid, 0,100); T0:=
algebra.select(R0,0,100); bpm.insert(Tmp,T0);
R1:bat[:oid,:int]:= bpm.take("myversion", nil:oid,nil:oid, 101,200); T1:= alge-
bra.select(R1,0,100); bpm.insert(Tmp,T1);

Chapter 8: The MAL Modules 140

R2:bat[:oid,:int]:= bpm.take("myversion", nil:oid,nil:oid, 201,nil:int); T2:= al-
gebra.select(R2,0,100); bpm.insert(Tmp,T2);

Note that a symbolic optimizer can reduce this plan to a small snippet.

The rationale for the update approach is that re-distribution of temporary results are
hidden behind the bpm.insert() interface. The only decision that should be taken by the
optimizer is the fragmentation criteria for the temporary results.

For temporary results the range bounds need not be stored in the BPM catalog. Instead,
the mat approach could be used to reduce the plan size.

bpm.open(); Ralias:= bpm.take("myversion",:bat[:oid,:int]); # get the parti-
tion alias R0:= bpm.take(Ralias, 0); T0:=algebra.select(R0,0,100);

R1:= bpm.take(Ralias, 1); T1:= algebra.select(R1,0,100);

R2:= bpm.take(Ralias, 2); R:= mat.new(T0,T1,T2); T2:=algebra.select(R2,0,100);

8.17.5 Partition iterators

The default strategy for an optimizer is to replace a reference to a partitioned BAT by an
iterator.

l:= bpm.new(); barrier Elm:bat[:oid,:int]:= bpm.newIterator(Ralias); t:=
algebra.select(Elm,0,20); bpm.addPartition(l,t); redo Elm:bat[:oid,:int]:=
bpm.newIterator(Ralias); exit Elm;

Variations on this theme are iterators that search for partitions overlapping a range or
those that are not empty.

8.17.6 Partition selection

Partition aware relational operators further reduce the performance overhead and at the
same time avoid cluttering the MAL plans with too much flow of control constructs. A few
operators relevant for the SQL environment will be added.

The select operation can be overloaded in the BPM to improve processing further. For
example, the operation

t := bpm.select(Ralias,0,100);

extracts portions of all three partitions and creates a non-partitioned result BAT. If the
partition bounds align with the selection criteria this operation becomes cheap. It can be
used to convey information on the bounds to optimizers.

The lifetime of a partitioned table is inherited from its components. How to detect
that a temporary BAT is removed from the BBP? Currently we have to explicitly call the
bpm.garbage() on those partitioned BATs.

At the end of a query plan we have to garbage collect any of the left-over partitioned
temporary tables.

Chapter 8: The MAL Modules 141

8.18 Performance profiler

A key issue in developing fast programs using the Monet database back-end requires a keen
eye on where performance is lost. Although performance tracking and measurements are
highly application dependent, a simple to use tool makes life a lot easier.

Activation of the performance monitor has a global effect, i.e. all concurrent actions on
the kernel are traced, but the events are only sent to the client initiated the profiler thread.

8.18.1 Monet Event Logger

The Monet Event Logger generates records of each event of interest indicated by a log filter,
i.e. a pattern over module and function names.

The log record contents is derived from counters being (de-)activated. A complete list
of recognized counters is shown below.

8.18.2 Execution tracing

Tracing is a special kind of profiling, where the information gathered is not sent to a remote
system, but stored in the database itself. Each profile event is given a separate BAT
thread and time since start
profiler.activate("tick");
cpu time in nano-seconds
profiler.activate("cpu");
memory allocation information
profiler.activate("memory");
IO activity
profiler.activate("io");
Module,function,program counter
profiler.activate("pc");
actual MAL instruction executed
profiler.activate("statement");

The profiler event can be handled in several ways. The default strategy is to ship the
event record immediately over a stream to a performance monitor. An alternative strategy
is preparation of off-line performance analysis.

To reduce the interference of performance measurement with the experiments, the user
can use an event cache, which is emptied explicitly upon need.

module profiler;

command activate(name:str):void
address CMDactivateProfiler comment "Make the specified counter active.";

command deactivate(name:str):void
address CMDdeactivateProfiler comment "Deactivate the counter";

pattern openStream():void
address CMDopenProfilerStream comment "Sent the events to output stream";

pattern openStream(fnme:str):void
address CMDsetProfilerFile comment "Send the log events to a file, stdout or
console";

Chapter 8: The MAL Modules 142

pattern openStream(host:str, port:int):void
address CMDsetProfilerStream comment "Send the log events to a stream ";

command closeStream():void
address CMDcloseProfilerStream comment "Stop sending the event records";

pattern setAll():void
address CMDsetAllProfiler comment "Short cut for setFilter(*,*).";

pattern setNone():void
address CMDsetNoneProfiler comment "Short cut for clrFilter(*,*).";

pattern setFilter(mod:str,fcn:str):void
address CMDsetFilterProfiler comment "Generate an event record for all func-
tion calls that satisfy the regular expression mod.fcn. A wildcard (*) can be
used as name to identify all";

pattern setFilter(v:any):void
address CMDsetFilterVariable comment "Generate an event record for every
instruction where v is used.";

pattern clrFilter(mod:str,fcn:str):void
address CMDclrFilterProfiler comment "Clear the performance trace bit of the
selected functions.";

pattern clrFilter(v:any):void
address CMDsetFilterVariable comment "Stop tracing the variable" ;

pattern setStartPoint(mod:str,fcn:str):void
address CMDstartPointProfiler comment "Start performance tracing at
mod.fcn";

pattern setEndPoint(mod:str,fcn:str)
address CMDendPointProfiler comment "End performance tracing after
mod.fcn";

pattern start():void
address CMDstartProfiler comment "Start performance tracing";

command noop():void
address CMDnoopProfiler comment "Fetch any pending performance events";

pattern stop():void
address CMDstopProfiler comment "Stop performance tracing";

command reset():void
address CMDclearTrace comment "Clear the profiler traces";

command dumpTrace():void
address CMDdumpTrace comment "List the events collected";

command getTrace(e:str):bat[:int,:any_1]
address CMDgetTrace comment "Get the trace details of a specific event";

pattern getEvent()(:lng,:lng,:lng)
address CMDgetEvent comment "Retrieve the performance indicators of the
previous instruction";

Chapter 8: The MAL Modules 143

command cleanup():void
address CMDcleanup comment "Remove the temporary tables for profiling";

command getDiskReads():lng
address CMDgetDiskReads comment "Obtain the number of physical reads";

command getDiskWrites():lng
address CMDgetDiskWrites comment "Obtain the number of physical reads";

command getUserTime():lng
address CMDgetUserTime comment "Obtain the user timing information.";

command getSystemTime():lng
address CMDgetSystemTime comment "Obtain the user timing information.";

pattern getFootprint():lng
address CMDgetFootprint comment "Get the memory footprint and reset it";

pattern getMemory():lng
address CMDgetMemory comment "Get the amount of memory claimed and
reset it";

8.19 PCRE library interface

The PCRE library is a set of functions that implement regular expression pattern matching
using the same syntax and semantics as Perl, with just a few differences. The current
implementation of PCRE (release 4.x) corresponds approximately with Perl 5.8, including
support for UTF-8 encoded strings. However, this support has to be explicitly enabled; it
is not the default.

8.20 Remote querying functionality

Communication with other mservers at the MAL level is a delicate task. However, it is
indispensable for any distributed functionality. This module provides an abstract way to
store and retrieve objects on a remote site. Additionally, functions on a remote site can be
executed using objects available in the remote session context. This yields in four primitive
functions that form the basis for distribution methods: get, put, register and exec.

The get method simply retrieves a copy of a remote object. Objects can be simple values,
strings or BATs. The same holds for the put method, but the other way around. A local
object can be stored on a remote site. Upon a successful store, the put method returns the
remote identifier for the stored object. With this identifier the object can be addressed, e.g.
using the get method to retrieve the object that was stored using put.

The get and put methods are symmetric. Performing a get on an identifier that was
returned by put, results in an object with the same value and type as the one that was put.
The result of such an operation is equivalent to making an (expensive) copy of the original
object.

The register function takes a local MAL function and makes it known at a remote site. It
ensures that it does not overload an already known operation remotely, which could create
a semantic conflict. Deregister a function is forbidden, because it would allow for taking
over the remote site completely. C-implemented functions, such as io.print() cannot be

Chapter 8: The MAL Modules 144

remotely stored. It would require even more complicated (byte?) code shipping and remote
compilation to make it work. Currently, the remote procedure may only returns a single
value.

The choice to let exec only execute functions was made to avoid problems to decide what
should be returned to the caller. With a function it is clear and simple to return that what
the function signature prescribes. Any side effect (e.g. io.print calls) may cause havoc in
the system, but are currently ignored.

This leads to the final contract of this module. The methods should be used correctly,
by obeying their contract. Failing to do so will result in errors and possibly undefined
behaviour.

The resolve() function can be used to query Merovingian. It returns one or more data-
bases discovered in its vincinity matching the given pattern.

module remote;
module loading and unloading funcs

command prelude():void
address RMTprelude comment "Initialise the remote module.";

command epilogue():void
address RMTepilogue comment "Release the resources held by the remote mod-
ule.";
global connection resolve function

command resolve(pattern:str):bat[:oid,:str]
address RMTresolve comment "resolve a pattern against Merovingian and re-
turn the URIs";
session local connection instantiation functions

command connect(uri:str, user:str, passwd:str):str
address RMTconnect comment "returns a newly created connection for uri,
using user name and password";

command connect(uri:str, user:str, passwd:str, scen:str):str
address RMTconnectScen comment "returns a newly created connection for
uri, using user name, password and scenario";

command disconnect(conn:str):void
address RMTdisconnect comment "disconnects the connection pointed to by
handle (received from a call to connect()";
core transfer functions

pattern get(conn:str, ident:str):any
address RMTget comment "retrieves a copy of remote object ident";

pattern put(conn:str, object:any):str
address RMTput comment "copies object to the remote site and returns its
identifier";

pattern register(conn:str, mod:str, fcn:str):void
address RMTregister comment "register <mod>.<fcn> at the remote site";

Chapter 8: The MAL Modules 145

pattern exec(conn:str, mod:str, func:str):str
address RMTexec comment "remotely executes <mod>.<func> and returns the
handle to its result";

pattern exec(conn:str, mod:str, func:str)(:str, :str)
address RMTexec comment "remotely executes <mod>.<func> and returns the
handle to its result";

pattern exec(conn:str, mod:str, func:str, :str...):str
address RMTexec comment "remotely executes <mod>.<func> using the argu-
ment list of remote objects and returns the handle to its result";

pattern exec(conn:str, mod:str, func:str, :str...)(:str, :str)
address RMTexec comment "remotely executes <mod>.<func> using the argu-
ment list of remote objects and returns the handle to its result";

8.21 Statistics box.

Most optimizers need easy access to key information for proper plan generation. Amongst
others, this volatile information consists of the tuple count, size, min- and max-value, the
null-density, and a histogram of the value distribution.

The statistics are management by a Box, which gives a controlled environment to manage
a collection of BATs and system variables.

BATs have to be deposit into the statistics box separately, because the costs attached
maintaining them are high. The consistency of the statistics box is partly the responsibility
of the upper layers. There is no automatic triggering when the BATs referenced are heavily
modified or are being destroyed. They disappear from the statistics box the first time an
invalid access is attempted or during system reboot.

The staleness of the information can be controlled in several ways. The easiest, and
most expensive, is to assure that the statistics are updated when you start the server.
Alternative, you can set a expiration interval, which will update the information only when
it is considered expired. This test will be triggered either at server restart or your explicit
call to update the statistics tables. The statistics table is commited each time you change
it.

A forced update can be called upon when the front-end expects the situation to be
changed drastically.

The statistics table is mostly used internally, but once in a while you need a dump for
closed inspection. in your MAL program for inspection. Just use the BBP bind operation
to locate them in the buffer pool.

module statistics;

pattern open():void
address STATopen comment "Locate and open the statistics box";

pattern close():void
address STATclose comment "Close the statistics box ";

pattern destroy():void
address STATdestroy comment "Destroy the statistics box";

Chapter 8: The MAL Modules 146

pattern take(name:any_1):any_2
address STATtake comment "Take a variable out of the statistics box";

pattern deposit(name:str) :void
address STATdepositStr comment "Enter a new BAT into the statistics box";

pattern deposit(name:bat[:any_1,:any_2]) :void
address STATdeposit comment "Enter a new BAT into the statistics box";

pattern releaseAll():void
address STATreleaseAll comment "Release all variables in the box";

pattern release(name:str) :void
address STATreleaseStr comment "Release a single BAT from the box";

pattern release(name:bat[:any_1,:any_2]):void
address STATrelease comment "Release a single BAT from the box";

pattern toString(name:any_1):str
address STATtoString comment "Get the string representation of an element
in the box";

pattern discard(name:str) :void
address STATdiscard comment "Release a BAT by name from the box";

pattern discard(name:bat[:any_1,:any_2]) :void
address STATdiscard2 comment "Release a BAT variable from the box";

pattern newIterator()(:lng,:str)
address STATnewIterator comment "Locate next element in the box";

pattern hasMoreElements()(:lng,:str)
address STAThasMoreElements comment "Locate next element in the box";

command update()
address STATupdate comment "Check for stale information";

command forceUpdate()
address STATforceUpdateAll comment "Bring all information up to date";

command forceUpdate(bnme:str)
address STATforceUpdate comment "Bring the statistics up to date for one
BAT";

command prelude() :void
address STATprelude comment "Initialize the statistics package";

command epilogue() :void
address STATepilogue comment "Release the resources of the statistics pack-
age";

pattern dump() :void
address STATdump comment "Display the statistics table";

command getObjects():bat[:int,:str]
address STATgetObjects comment "Return a table with BAT names managed";

Chapter 8: The MAL Modules 147

pattern getHotset():bat[:int,:str]
address STATgetHotset comment "Return a table with BAT names that have
been touched since the start of the session";

pattern getCount(nme:str):lng
address STATgetCount comment "Return latest stored count information";

pattern getSize(nme:str):lng
address STATgetSize comment "Return latest stored count information";

pattern getMin(nme:str):lng
address STATgetMin comment "Return latest stored minimum information";

pattern getMax(nme:str):lng
address STATgetMax comment "Return latest stored maximum information";

pattern getHistogram(nme:str):bat[:any_1,:any_2]
address STATgetHistogram comment "Return the latest histogram");

8.22 The table interface

A database cannot live without ASCII tabular print/dump/load operations. It is needed
to produce reasonable listings, to exchange answers with a client, and to keep a database
version for backup. This is precisely where the tablet module comes in handy. [This module
should replace all other table dump/load functions]

We start with a simple example to illustrate the plain ASCII representation and the fea-
tures provided. Consider the relational table answer(name:str, age:int, sex:chr, address:str,
dob:date) obtained by calling the routine tablet.page(B1,...,Bn) where the Bi represent
BATS.
["John Doe", 25, ’M’, "Parklane 5", "25-12-1978"]
["Maril Streep", 23, ’F’, "Church 5", "12-07-1980"]
["Mr. Smith", 53, ’M’, "Church 1", "03-01-1950"]

The lines contain the representation of a list in Monet tuple format. This format has
been chosen to ease parsing by any front-end. The scalar values are represented according
to their type. For visual display, the columns are aligned by placing enough tabs between
columns based on sampling the underlying bat to determine a maximal column width.
(Note,actual commas are superfluous).

The arguments to the command can be any sequence of BATs, but which are assumed
to be aligned. That is, they all should have the same number of tuples and the j-th tuple
tail of Bi is printed along-side the j-th tuple tail of Bi+1.

Printing both columns of a single bat is handled by tablet as a print of two columns. This
slight inconvenience is catch-ed by the io.print(b) command, which resolves most back-ward
compatibility issues.

In many cases, this output would suffice for communication with a front-end. However,
for visual inspection the user should be provided also some meta information derived from
the database schema. Likewise, when reading a table this information is needed to prepare a
first approximation of the schema namings. This information is produced by the command
tablet.header(B1,...,Bn), which lists the column role name. If no role name is give, a default
is generated based on the BAT name, e.g. B1 tail.

Chapter 8: The MAL Modules 148

#--#
name, age, sex, address, dob
#--#
["John Doe", 25, ’M’, "Parklane 5", "25-12-1978"]
["Maril Streep", 23, ’F’, "Church 5", "12-07-1980"]
["Mr. Smith", 53, ’M’, "Church 1", "03-01-1950"]

The command tablet.display(B1,...,Bn) is a contraction of tablet.header(); tablet.page().

In many cases, the tablet produced may be too long to consume completely by the front
end. In that case, the user needs page size control, much like the more/less utilities under
Linux. However, no guarantee is given for arbitrarily going back and forth. [but works as
long as we materialize results first]. A portion of the tablet can be printed by identifying
the rows of interest as the first parameter(s) in the page command, e.g.

tablet.page(nil,10,B1,...,Bn); #prints first 10 rows
tablet.page(10,20,B1,...,Bn); #prints next 10 rows
tablet.page(100,nil,B1,...,Bn); #starts printing at tuple 100 until end

A paging system also provides the commands tablet.firstPage(), tablet.nextPage(),
tablet.prevPage(), and tablet.lastPage() using a user controlled tablet size
tablet.setPagesize(L).

The tablet display operations use a client (thread) specific formatting struc-
ture. This structure is initialized using either tablet.setFormat(B1,...,Bn) or
tablet.setFormat(S1,...,Sn) (Bi is a BAT, Si a scalar). Subsequently, some additional
properties can be set/modified, column width and brackets. After printing/paging the
BAT resources should be freed using the command tablet.finish().

Any access outside the page-range leads to removal of the report structure. Subsequent
access will generate an error. To illustrate, the following code fragment would be generated
by the SQL compiler

tablet.setFormat(B1,B2);
tablet.setDelimiters("|","\t","|\n");
tablet.setName(0, "Name");
tablet.setNull(0, "?");
tablet.setWidth(0, 15);
tablet.setBracket(0, " ", ",");
tablet.setName(1, "Age");
tablet.setNull(1, "-");
tablet.setDecimal(1, 9,2);
tablet.SQLtitle("Query: select * from tables");
tablet.page();
tablet.SQLfooter(count(B1),cpuTicks);

This table is printed with tab separator(s) between elements and the bar (|) to mark
begin and end of the string. The column parameters give a new title, a null replacement
value, and the preferred column width. Each column value is optionally surrounded by
brackets. Note, scale and precision can be applied to integer values only. A negative scale
leads to a right adjusted value.

The title and footer operations are SQL specific routines to decorate the output.

Chapter 8: The MAL Modules 149

Another example involves printing a two column table in XML format. [Alternative,
tablet.XMLformat(B1,B2) is a shorthand for the following:]

tablet.setFormat(B1,B2);
tablet.setTableBracket("<rowset>","</rowset>");
tablet.setRowBracket("<row>","</row>");
tablet.setBracket(0, "<name>", "</name>");
tablet.setBracket(1, "<age>", "</age>");
tablet.page();

8.22.1 Tablet properties

More detailed header information can be obtained with the command
tablet.setProperties(S), where S is a comma separated list of properties of inter-
est, followed by the tablet.header(). The properties to choose from are: bat, name, type,
width, sorted, dense, key, base, min, max, card,....

#--------------------------------------#
B1, B2, B3, B4, B5 # BAT
str, int, chr, str, date # type
true, false, false, false, false # sorted
true, true, false, false, false # key
, 23, ’F’, , # min
, 53, ’M’, , # max
4, 4, 4, 4, 4 # count
4,i 3, 2, 2, 3 # card
name, age, sex, address, dob # name
#--------------------------------------#

8.22.2 Scalar tablets

In line with the 10-year experience of Monet, printing scalar values follow the tuple layout
structure. This means that the header() command is also applicable. For example, the
sequence "i:=0.2;v:=sin(i); tablet.display(i,v);" produces the answer:

#----------------#
i, v
#----------------#
[0.2, 0.198669]
#----------------#

All other formatted printing should be done with the printf() operations contained in
the module io.

8.22.3 Tablet dump/restore

Dump and restore operations are abstractions over sequence of tablet commands.
The command tablet.dump(stream,B1,...,Bn) is a contraction of the sequence
tablet.setStream(stream); tablet.setProperties("name,type,dense,sorted,key,min,max");
tablet.header(B1,..,Bn); tablet.page(B1,..,Bn). The result can be read by
tablet.load(stream,B1,..,Bn) command. If loading is successful, e.g. no parsing
errors occurred, the tuples are appended to the corresponding BATs.

Chapter 8: The MAL Modules 150

8.22.4 Front-end extension

A general bulk loading of foreign tables, e.g. CSV-files and fixed position records,
is not provided. Instead, we extend the list upon need. Currently, the routines
tablet.SQLload(stream,delim1,delim2, B1,..,Bn) reads the files using the Oracle(?) storage.
The counterpart for dumping is tablet.SQLdump(stream,delim1,delim2);

8.22.5 The commands

The load operation is for bulk loading a table, each column will be loaded into its own bat.
The arguments are void-aligned bats describing the input, ie the name of the column, the
tuple separator and the type. The nr argument can be -1 (The input (datafile) is read until
the end) or a maximum.

The dump operation is for dumping a set of bats, which are aligned. Again with void-
aligned arguments, with name (currently not used), tuple separator (the last is the record
separator) and bat to be dumped. With the nr argument the dump can be limited (-1 for
unlimited).

The output operation is for ordered output. A bat (possibly form the collection) gives
the order. For each element in the order bat the values in the bats are searched, if all are
found they are output in the datafile, with the given separators.

The scripts from the tablet.mil file are all there too for backward compatibility with the
old Mload format files.

The load format loads the format file, since the old format file was in a table format it
can be loaded with the load command.

The result from load format can be used with load data to load the data into a set of
new bats.

These bats can be made persistent with the make persistent script or merge with existing
bats with the merge data script.

The dump format scripts dump a format file for a given set of to be dumped bats. These
bats can be dumped with dump data.

module tablet;

command load(names:bat[:oid,:str], seps:bat[:oid,:str],
types:bat[:oid,:str], datafile:str, nr:int) :bat[:str,:bat] address CMDtablet load
comment "Load a bat using specific format.";

command input(names:bat[:oid,:str], seps:bat[:oid,:str],
types:bat[:oid,:str], s:streams, nr:int) :bat[:str,:bat] address CMDtablet input
comment "Load a bat using specific format.";

command dump(names:bat[:oid,:str], seps:bat[:oid,:str],
bats:bat[:oid,:bat], datafile:str, nr:int) :void address CMDtablet dump com-
ment "Dump the bat in ASCII format";

command output(order:bat[:any_1,:any_2], seps:bat[:oid,:str],
bats:bat[:oid,:bat], s:streams) :void address CMDtablet output comment "Send
the bat to an output stream.";

pattern display(v:any...):int
address TABdisplayRow comment "Display a formatted row";

Chapter 8: The MAL Modules 151

pattern display(v:bat[:any_1,:any]...):int
address TABdisplayTable comment "Display a formatted table";

pattern page(b:bat[:any_1,:any]...):int
address TABpage comment "Display all pages at once without header";

pattern header(b:any...):int
address TABheader comment "Display the minimal header for the table";

pattern setProperties(prop:str):int
address TABsetProperties comment "Define the set of properties";

pattern dump(s:streams,b:bat[:any,:any]...):int
address TABdump comment "Print all pages with header to a stream";

pattern setFormat(b:any...):void
address TABsetFormat comment "Initialize a new reporting structure.";

pattern finish():void
address TABfinishReport comment "Free the storage space of the report de-
scriptor";

pattern setStream(s:streams):void
address TABsetStream comment "Redirect the output to a stream.";

pattern setPivot(b:bat[:void,:oid]) :void
address TABsetPivot comment "The pivot bat identifies the tuples of interest.
The only requirement is that all keys mentioned in the pivot tail exist in all
BAT parameters of the print comment. The pivot also provides control over
the order in which the tuples are produced.";

pattern setDelimiter(sep:str):void
address TABsetDelimiter comment "Set the column separator.";

pattern setTableBracket(lbrk:str,rbrk:str)
address TABsetTableBracket comment "Format the brackets around a table";

pattern setRowBracket(lbrk:str,rbrk:str)
address TABsetRowBracket comment "Format the brackets around a row";

Set the column properties

pattern setColumn(idx:int, v:any_1)
address TABsetColumn comment "Bind i-th output column to a variable";

pattern setName(idx:int, nme:str)
address TABsetColumnName comment "Set the display name for a given col-
umn";

pattern setBracket(idx:int,lbrk:str,rbrk:str)
address TABsetColumnBracket comment "Format the brackets around a field";

pattern setNull(idx:int, fmt:str)
address TABsetColumnNull comment "Set the display format for a null value
for a given column";

Chapter 8: The MAL Modules 152

pattern setWidth(idx:int, maxwidth:int)
address TABsetColumnWidth comment "Set the maximal display witdh for a
given column. All values exceeding the length are simple shortened without
any notice.";

pattern setPosition(idx:int,f:int,i:int)
address TABsetColumnPosition comment "Set the character position to use for
this field when loading according to fixed (punch-card) layout.";

pattern setDecimal(idx:int,s:int,p:int)
address TABsetColumnDecimal comment "Set the scale and precision for nu-
meric values";

pattern setTryAll()
address TABsetTryAll comment "Skip error lines and assemble an error report";

pattern setComplaints(b:bat[:oid,:str]) :void
address TABsetComplaints comment "The comlaints bat identifies all erroneous
lines encountered ";

command firstPage():void
address TABfirstPage comment "Produce the first page of output";

command lastPage():void
address TABlastPage comment "Produce the last page of output";

command nextPage():void
address TABnextPage comment "Produce the next page of output";

command prevPage():void
address TABprevPage comment "Produce the prev page of output";

command getPageCnt():void
address TABgetPageCnt comment "Return the size in number of pages";

command getPage(i:int):void
address TABgetPage comment "Produce the i-th page of output";

8.22.6 Raw Load

Front-ends can bypass most of the overhead in loading the BATs by preparing the corre-
sponding files directly and replace those created by e.g. the SQL frontend. This strategy
is only advisable for cases where we have very large files >200GB and/or are created by a
well debugged code.

To experiment with this approach, the code base responds on negative number of cores
by dumping the data directly in BAT storage format into a collections of files on disk.
It reports on the actions to be taken to replace BATs. This technique is initially only
supported for fixed-sized columns.

8.23 Transaction management

In the philosophy of Monet, transaction management overhead should only be paid when
necessary. Transaction management is for this purpose implemented as a module. This code
base is largely absolute and should be re-considered when serious OLTP is being supported.
Note, however, the SQL front-end obeys transaction semantics.

Chapter 8: The MAL Modules 153

module transaction;

command sync():bit
address TRNglobal sync comment "Save all persistent BATs";

command commit():bit
address TRNglobal commit comment "Global commit on all BATs";

command abort():bit
address TRNglobal abort comment "Global abort on all BATs";

command subcommit(b:bat[:any_1,:str]):bit
address TRNsubcommit comment "commit only a set of BATnames, passed in
the tail (to which you must have exclusive access!)";

pattern commit(c:any...)
address TRNtrans commit comment "Commit changes in certain BATs.";

pattern abort(c:any...)
address TRNtrans abort comment "Abort changes in certain BATs.";

pattern clean(c:any...)
address TRNtrans clean comment "Declare a BAT clean without flushing to
disk.";

command prev(b:bat[:any_1,:any_2]):bat[:any_1,:any_2]
address TRNtrans prev comment "The previous stae of this BAT";

command alpha(b:bat[:any_1,:any_2]) :bat[:any_1,:any_2]
address TRNtrans alpha comment "List insertions since last commit.";

command delta(b:bat[:any_1,:any_2]) :bat[:any_1,:any_2]
address TRNtrans delta comment "List deletions since last commit.";

8.24 The Inner Core

The innermost library of the MonetDB database system is formed by the library called
GDK, an abbreviation of Goblin Database Kernel. Its development was originally rooted
in the design of a pure active-object-oriented programming language, before development
was shifted towards a re-usable database kernel engine.

GDK is a C library that provides ACID properties on a DSM model [Copeland85] , using
main-memory database algorithms [Garcia-Molina92] built on virtual-memory OS primi-
tives and multi-threaded parallelism. Its implementation has undergone various changes
over its decade of development, many of which were driven by external needs to obtain a
robust and fast database system.

The coding scheme explored in GDK has also laid a foundation to communicate over
time experiences and to provide (hopefully) helpful advice near to the place where the code-
reader needs it. Of course, over such a long time the documentation diverges from reality.
Especially in areas where the environment of this package is being described. Consider such
deviations as historic landmarks, e.g. crystallization of brave ideas and mistakes rectified
at a later stage.

Chapter 8: The MAL Modules 154

8.25 Short Outline

The facilities provided in this implementation are:
• GDK or Goblin Database Kernel routines for session management
• BAT routines that define the primitive operations on the database tables (BATs).
• BBP routines to manage the BAT Buffer Pool (BBP).
• ATOM routines to manipulate primitive types, define new types using an ADT inter-

face.
• HEAP routines for manipulating heaps: linear spaces of memory that are GDK’s vehicle

of mass storage (on which BATs are built).
• DELTA routines to access inserted/deleted elements within a transaction.
• HASH routines for manipulating GDK’s built-in linear-chained hash tables, for accel-

erating lookup searches on BATs.
• TM routines that provide basic transaction management primitives.
• TRG routines that provided active database support. [DEPRECATED]
• ALIGN routines that implement BAT alignment management.

The Binary Association Table (BAT) is the lowest level of storage considered in the
Goblin runtime system [Goblin] . A BAT is a self-descriptive main-memory structure that
represents the binary relationship between two atomic types. The association can be defined
over:

void: virtual-OIDs: a densely ascending column of OIDs (takes zero-storage).

bit: Booleans, implemented as one byte values.

chr: A single character (8 bits integers). DEPRECATED for storing text (Unicode
not supported).

bte: Tiny (1-byte) integers (8-bit integers).

sht: Short integers (16-bit integers).

int: This is the C int type (32-bit).

oid: Unique long int values uses as object identifier. Highest bit cleared always.
Thus, oids-s are 31-bit numbers on 32-bit systems, and 63-bit numbers on 64-
bit systems.

wrd: Machine-word sized integers (32-bit on 32-bit systems, 64-bit on 64-bit systems).

ptr: Memory pointer values. DEPRECATED. Can only be stored in transient BATs.

flt: The IEEE float type.

dbl: The IEEE double type.

lng: Longs: the C long long type (64-bit integers).

str: UTF-8 strings (Unicode). A zero-terminated byte sequence.

bat: Bat descriptor. This allows for recursive adminstered tables, but severely com-
plicates transaction management. Therefore, they CAN ONLY BE STORED
IN TRANSIENT BATs.

Chapter 8: The MAL Modules 155

This model can be used as a back-end model underlying other -higher level- models,
in order to achieve better performance and data independence in one go. The relational
model and the object-oriented model can be mapped on BATs by vertically splitting every
table (or class) for each attribute. Each such a column is then stored in a BAT with type
bat[oid,attribute], where the unique object identifiers link tuples in the different BATs.
Relationship attributes in the object-oriented model hence are mapped to bat[oid,oid] tables,
being equivalent to the concept of join indexes [Valduriez87] .

The set of built-in types can be extended with user-defined types through an ADT
interface. They are linked with the kernel to obtain an enhanced library, or they are
dynamically loaded upon request.

Types can be derived from other types. They represent something different than that
from which they are derived, but their internal storage management is equal. This feature
facilitates the work of extension programmers, by enabling reuse of implementation code,
but is also used to keep the GDK code portable from 32-bits to 64-bits machines: the oid
and ptr types are derived from int on 32-bits machines, but is derived from lng on 64 bits
machines. This requires changes in only two lines of code each.

To accelerate lookup and search in BATs, GDK supports one built-in search accelerator:
hash tables. We choose an implementation efficient for main-memory: bucket chained hash
[LehCar86,Analyti92] . Alternatively, when the table is sorted, it will resort to merge-scan
operations or binary lookups.

BATs are built on the concept of heaps, which are large pieces of main memory. They can
also consist of virtual memory, in case the working set exceeds main-memory. In this case,
GDK supports operations that cluster the heaps of a BAT, in order to improve performance
of its main-memory.

8.25.1 Rationale

The rationale for choosing a BAT as the building block for both relational and object-
oriented system is based on the following observations:

• - Given the fact that CPU speed and main-memory increase in current workstation
hardware for the last years has been exceeding IO access speed increase, traditional
disk-page oriented algorithms do no longer take best advantage of hardware, in most
database operations.
Instead of having a disk-block oriented kernel with a large memory cache, we choose
to build a main-memory kernel, that only under large data volumes slowly degrades to
IO-bound performance, comparable to traditional systems [boncz95,boncz96] .

• - Traditional (disk-based) relational systems move too much data around to save on
(main-memory) join operations.
The fully decomposed store (DSM [Copeland85)] assures that only those attributes of
a relation that are needed, will have to be accessed.

• - The data management issues for a binary association is much easier to deal with than
traditional struct-based approaches encountered in relational systems.

• - Object-oriented systems often maintain a double cache, one with the disk-based rep-
resentation and a C pointer-based main-memory structure. This causes expensive con-
versions and replicated storage management. GDK does not do such ‘pointer swizzling’.

Chapter 8: The MAL Modules 156

It used virtual-memory (mmap()) and buffer management advice (madvise()) OS prim-
itives to cache only once. Tables take the same form in memory as on disk, making the
use of this technique transparent [oo7] .

A RDBMS or OODBMS based on BATs strongly depends on our ability to efficiently
support tuples and to handle small joins, respectively.

The remainder of this document describes the Goblin Database kernel implementation
at greater detail. It is organized as follows:

GDK Interface:
It describes the global interface with which GDK sessions can be started and
ended, and environment variables used.

Binary Association Tables:
As already mentioned, these are the primary data structure of GDK. This
chapter describes the kernel operations for creation, destruction and basic ma-
nipulation of BATs and BUNs (i.e. tuples: Binary UNits).

BAT Buffer Pool:
All BATs are registered in the BAT Buffer Pool. This directory is used to guide
swapping in and out of BATs. Here we find routines that guide this swapping
process.

GDK Extensibility:
Atoms can be defined using a unified ADT interface. There is also an interface
to extend the GDK library with dynamically linked object code.

GDK Utilities:
Memory allocation and error handling primitives are provided. Layers built on
top of GDK should use them, for proper system monitoring. Thread manage-
ment is also included here.

Transaction Management:
For the time being, we just provide BAT-grained concurrency and global trans-
actions. Work is needed here.

BAT Alignment:
Due to the mapping of multi-ary datamodels onto the BAT model, we expect
many correspondences among BATs, e.g. bat(oid,attr1),.. bat(oid,attrN) ver-
tical decompositions. Frequent activities will be to jump from one attribute
to the other (‘bunhopping’). If the head columns are equal lists in two BATs,
merge or even array lookups can be used instead of hash lookups. The alignment
interface makes these relations explicitly manageable.

In GDK, complex data models are mapped with DSM on binary tables. Usually,
one decomposes N-ary relations into N BATs with an oid in the head column,
and the attribute in the tail column. There may well be groups of tables that
have the same sets of oids, equally ordered. The alignment interface is intended
to make this explicit. Implementations can use this interface to detect this
situation, and use cheaper algorithms (like merge-join, or even array lookup)
instead.

Chapter 8: The MAL Modules 157

BAT Iterators:
Iterators are C macros that generally encapsulate a complex for-loop. They
would be the equivalent of cursors in the SQL model. The macro interface
(instead of a function call interface) is chosen to achieve speed when iterating
main-memory tables.

Common BAT Operations:
These are much used operations on BATs, such as aggregate functions
and relational operators. They are implemented in terms of BAT- and
BUN-manipulation GDK primitives.

8.26 Interface Files

In this section we summarize the user interface to the GDK library. It consist of a header
file (gdk.h) and an object library (gdklib.a), which implements the required functionality.
The header file must be included in any program that uses the library. The library must
be linked with such a program.

8.26.1 Database Context

The MonetDB environment settings are collected in a configuration file. Amongst others
it contains the location of the database directory. First, the database directory is closed
for other servers running at the same time. Second, performance enhancements may take
effect, such as locking the code into memory (if the OS permits) and preloading the data
dictionary. An error at this stage normally lead to an abort.

8.26.2 GDK session handling

int GDKinit (char *db, char *dbfarm, int allocmap)
int GDKexit (int status)

The session is bracketed by GDKinit and GDKexit. Initialization involves setting up
the administration for database access, such as memory allocation for the database buffer
pool. During the exit phase any pending transaction is aborted and the database is freed
for access by other users. A zero is returned upon encountering an erroneous situation.

8.27 Binary Association Tables

Having gone to the previous preliminary definitions, we will now introduce the structure
of Binary Association Tables (BATs) in detail. They are the basic storage unit on which
GDK is modelled.

The BAT holds an unlimited number of binary associations, called BUNs (Binary UNits).
The two attributes of a BUN are called head (left) and tail (right) in the remainder of this
document.

The above figure shows what a BAT looks like. It consists of two columns, called head
and tail, such that we have always binary tuples (BUNs). The overlooking structure is the
BAT record. It points to a heap structure called the BUN heap. This heap contains the
atomic values inside the two columns. If they are fixed-sized atoms, these atoms reside
directly in the BUN heap. If they are variable-sized atoms (such as string or polygon),
however, the columns has an extra heap for storing those (such variable-sized atom heaps

Chapter 8: The MAL Modules 158

are then referred to as Head Heaps and Tail Heaps). The BUN heap then contains integer
byte-offsets (fixed-sized, of course) into a head- or tail-heap.

The BUN heap contains a contiguous range of BUNs. It starts after the first pointer,
and finishes at the end in the free area of the BUN. All BUNs after the inserted pointer
have been added in the last transaction (and will be deleted on a transaction abort). All
BUNs between the deleted pointer and the first have been deleted in this transaction (and
will be reinserted at a transaction abort).

The location of a certain BUN in a BAT may change between successive library routine
invocations. Therefore, one should avoid keeping references into the BAT storage area for
long periods.

Passing values between the library routines and the enclosing C program is primarily
through value pointers of type ptr. Pointers into the BAT storage area should only be used
for retrieval. Direct updates of data stored in a BAT is forbidden. The user should adhere
to the interface conventions to guarantee the integrity rules and to maintain the (hidden)
auxiliary search structures.

8.27.1 GDK variant record type

When manipulating values, MonetDB puts them into value records. The built-in types have
a direct entry in the union. Others should be represented as a pointer of memory in pval
or as a string, which is basically the same. In such cases the len field indicates the size of
this piece of memory.

8.27.2 The BAT record

The elements of the BAT structure are introduced in the remainder. Instead of using the
underlying types hidden beneath it, one should use a BAT type that is supposed to look
like this:

typedef struct {
/* static BAT properties */
bat batCacheid; /* bat id: index in BBPcache */
int batPersistence; /* persistence mode */
bit batCopiedtodisk; /* BAT is saved on disk? */
bit batSet; /* all tuples in the BAT are unique? */
/* dynamic BAT properties */
int batHeat; /* heat of BAT in the BBP */
sht batDirty; /* BAT modified after last commit? */
bit batDirtydesc; /* BAT descriptor specific dirty flag */
Heap* batBuns; /* Heap where the buns are stored */
/* DELTA status */
BUN batDeleted; /* first deleted BUN */
BUN batFirst; /* empty BUN before the first alive BUN */
BUN batInserted; /* first inserted BUN */
BUN batCount; /* Tuple count */
/* Head properties */
int htype; /* Head type number */

Chapter 8: The MAL Modules 159

str hident; /* name for head column */
bit hkey; /* head values should be unique? */
bit hsorted; /* are head values currently ordered? */
bit hvarsized; /* for speed: head type is varsized? */
bit hnonil; /* head has no nils */
oid halign; /* alignment OID for head. */
/* Head storage */
int hloc; /* byte-offset in BUN for head elements */
Heap *hheap; /* heap for varsized head values */
Hash *hhash; /* linear chained hash table on head */
/* Tail properties */
int ttype; /* Tail type number */
str tident; /* name for tail column */
bit tkey; /* tail values should be unique? */
bit tnonil; /* tail has no nils */
bit tsorted; /* are tail values currently ordered? */
bit tvarsized; /* for speed: tail type is varsized? */
oid talign; /* alignment OID for head. */
/* Tail storage */
int tloc; /* byte-offset in BUN for tail elements */
Heap theap; /* heap for varsized tail values */
Hash thash; /* linear chained hash table on tail */

} BAT;

The internal structure of the BAT record is in fact much more complex, but GDK
programmers should refrain of making use of that.

The reason for this complex structure is to allow for a BAT to exist in two incarnations
at the time: the normal view and the reversed view. Each bat b has a BATmirror(b) which
has the negative cacheid of b in the BBP.

Since we don’t want to pay cost to keep both views in line with each other under BAT
updates, we work with shared pieces of memory between the two views. An update to one
will thus automatically update the other. In the same line, we allow synchronized BATs
(BATs with identical head columns, and marked as such in the BAT Alignment interface)
now to be clustered horizontally.

8.27.3 Heap Management

Heaps are the low-level entities of mass storage in BATs. Currently, they can either be
stored on disk, loaded into memory, or memory mapped.

int HEAPalloc (Heap *h, size t nitems, size t itemsize);
int HEAPfree (Heap *h);
int HEAPextend (Heap *h, size t size);
int HEAPload (Heap *h, str nme,ext, int trunc);
int HEAPsave (Heap *h, str nme,ext);
int HEAPcopy (Heap *dst,*src);
int HEAPdelete (Heap *dst, str o, str ext);
int HEAPwarm (Heap *h);

Chapter 8: The MAL Modules 160

These routines should be used to alloc free or extend heaps; they isolate you from the
different ways heaps can be accessed.

8.27.4 Internal HEAP Chunk Management

Heaps are used in BATs to store data for variable-size atoms. The implementor must
manage malloc()/free() functionality for atoms in this heap. A standard implementation is
provided here.

void HEAP initialize (Heap* h, size t nbytes, size t nprivate, int align)

void HEAP destroy (Heap* h)

var_t HEAP malloc (Heap* heap, size t nbytes)

void HEAP free (Heap *heap, var t block)

int HEAP private (Heap* h)

void HEAP printstatus (Heap* h)

void HEAP check (Heap* h)

The heap space starts with a private space that is left untouched by the normal chunk
allocation. You can use this private space e.g. to store the root of an rtree HEAP malloc
allocates a chunk of memory on the heap, and returns an index to it. HEAP free frees a
previously allocated chunk HEAP private returns an integer index to private space.

8.27.5 BAT construction

BAT* BATnew (int headtype, int tailtype, BUN cap)
BAT* BATextend (BAT *b, BUN newcap)

A temporary BAT is instantiated using BATnew with the type aliases of the required
binary association. The aliases include the built-in types, such as TYPE int....TYPE ptr,
and the atomic types introduced by the user. The initial capacity to be accommodated
within a BAT is indicated by cap. Their extend is automatically incremented upon storage
overflow. Failure to create the BAT results in a NULL pointer.

The routine BATclone creates an empty BAT storage area with the properties inherited
from its argument.

8.27.6 BUN manipulation

BAT* BATins (BAT *b, BAT *c, bit force)
BAT* BATappend (BAT *b, BAT *c, bit force)
BAT* BATdel (BAT *b, BAT *c, bit force)
BAT* BUNins (BAT *b, ptr left, ptr right, bit force)
BAT* BUNappend (BAT *b, ptr right, bit force)
BAT* BUNreplace (BAT *b, ptr left, ptr right, bit force)
int BUNdel (BAT *b, ptr left, ptr right, bit force)
int BUNdelHead (BAT *b, ptr left, bit force)
BUN BUNfnd (BAT *b, ptr head)
void BUNfndOID (BUN result, BATiter bi, oid *head)
void BUNfndSTD (BUN result, BATiter bi, ptr head)

Chapter 8: The MAL Modules 161

BUN BUNlocate (BAT *b, ptr head, ptr tail)
ptr BUNhead (BAT *b, BUN p)
ptr BUNtail (BAT *b, BUN p)

The BATs contain a number of fixed-sized slots to store the binary associations. These
slots are called BUNs or BAT units. A BUN variable is a pointer into the storage area of
the BAT, but it has limited validity. After a BAT modification, previously obtained BUNs
may no longer reside at the same location.

The association list does not contain holes. This density permits users to quickly access
successive elements without the need to test the items for validity. Moreover, it simplifies
transport to disk and other systems. The negative effect is that the user should be aware
of the evolving nature of the sequence, which may require copying the BAT first.

The update operations come in three flavors. Element-wise updates can use BUNins,
BUNappend, BUNreplace, BUNdel, and BUNdelHead. The batch update operations are
BATins, BATappend and BATdel.

Only experts interested in speed may use BUNfastins, since it skips most consistency
checks, does not update search accelerators, and does not maintain properties such as the
hsorted and tsorted flags. Beware!

The routine BUNfnd provides fast access to a single BUN providing a value for the head
of the binary association. A very fast shortcut for BUNfnd if the selection type is known
to be integer or OID, is provided in the form of the macro BUNfndOID.

To select on a tail, one should use the reverse view obtained by BATmirror.
The routines BUNhead and BUNtail return a pointer to the first and second value in

an association, respectively. To guard against side effects on the BAT, one should normally
copy this value into a scratch variable for further processing.

Behind the interface we use several macros to access the BUN fixed part and the variable
part. The BUN operators always require a BAT pointer and BUN identifier.
• BAThtype(b) and BATttype(b) find out the head and tail type of a BAT.
• BUNfirst(b) returns a BUN pointer to the first BUN as a BAT.
• BUNlast(b) returns the BUN pointer directly after the last BUN in the BAT.
• BUNhead(b, p) and BUNtail(b, p) return pointers to the head-value and tail-value in

a given BUN.
• BUNhloc(b, p) and BUNtloc(b, p) do the same thing, but knowing in advance that the

head-atom resp. tail-atom of a BAT is fixed size.
• BUNhvar(b, p) and BUNtvar(b, p) do the same thing, but knowing in advance that

the head-atom resp. tail-atom of a BAT is variable sized.

8.27.7 BAT properties

BUN BATcount (BAT *b)
void BATsetcapacity (BAT *b, BUN cnt)
void BATsetcount (BAT *b, BUN cnt)
BUN BATbuncount (BAT *b)
str BATrename (BAT *b, str nme)
BAT * BATkey (BAT *b, int onoff)
BAT * BATset (BAT *b, int onoff)

Chapter 8: The MAL Modules 162

BAT * BATmode (BAT *b, int mode)
BAT * BATsetaccess (BAT *b, int mode)
int BATdirty (BAT *b)
int BATgetaccess (BAT *b)

The function BATcount returns the number of associations stored in the BAT.
The function BATbuncount returns the space that is occupied in associations in the

BAT. This is not the same as BATcount, since the first N associations may be unused or
delta data.

The BAT is given a new logical name using BATrename.
The integrity properties to be maintained for the BAT are controlled separately. A key

property indicates that duplicates in the association dimension are not permitted. The BAT
is turned into a set of associations using BATset. Key and set properties are orthogonal
integrity constraints. The strongest reduction is obtained by making the BAT a set with
key restrictions on both dimensions.

The persistency indicator tells the retention period of BATs. The system support three
modes: PERSISTENT, TRANSIENT, and SESSION. The PERSISTENT BATs are au-
tomatically saved upon session boundary or transaction commit. TRANSIENT BATs are
removed upon transaction boundary. SESSION BATs are removed at the end of a session.
They are normally used to maintain temporary results. All BATs are initially TRANSIENT
unless their mode is changed using the routine BATmode.

The BAT properties may be changed at any time using BATkey, BATset, and BATmode.
Valid BAT access properties can be set with BATsetaccess and BATgetaccess:

BAT READ, BAT APPEND, and BAT WRITE. BATs can be designated to be read-only.
In this case some memory optimizations may be made (slice and fragment bats can point
to stable subsets of a parent bat). A special mode is append-only. It is then allowed to
insert BUNs at the end of the BAT, but not to modify anything that already was in there.

8.27.8 BAT manipulation

BAT * BATclear (BAT *b)
BAT * BATcopy (BAT *b, int ht, int tt, int writeable)
BAT * BATmark (BAT *b, oid base)
BAT * BATmark grp (BAT *b, BAT *g, oid *s)
BAT * BATnumber (BAT *b)
BAT * BATmirror (BAT *b)
BAT * BATreset (BAT *b)

The routine BATclear removes the binary associations, leading to an empty, but (re-
)initialized BAT. Its properties are retained. A temporary copy is obtained with BATcopy.
The new BAT has an unique name. The routine BATmark creates a binary association
that introduces a new tail column of fresh densely ascending OIDs. The base OID can be
given explicitly, or if oid nil is passed, is chosen as a new unique range by the system. A
similar routine is BATnumber, which copies the heads and assigns an integer index to the
tail. It plays a crucial role in administration of query results.

The routine BATmirror returns the mirror image BAT (where tail is head and head is
tail) of that same BAT. This does not involve a state change in the BAT (as previously):
both views on the BAT exist at the same time.

Chapter 8: The MAL Modules 163

8.27.9 BAT Input/Output

BAT * BATload (str name)
BAT * BATsave (BAT *b)
int BATmmap (BAT *b, int hb, int tb, int hh, int th)
int BATmadvise (BAT *b, int hb, int tb, int hh, int th)
int BATmmap pin (BAT *b)
int BATmmap unpin (BAT *b)
int BATdelete (BAT *b)

A BAT created by BATnew is considered temporary until one calls the routine BATsave
or BATmode. This routine reserves disk space and checks for name clashes in the BAT
directory. It also makes the BAT persistent. The empty BAT is initially marked as ordered
on both columns. Failure to read or write the BAT results in a NULL, otherwise it returns
the BAT pointer.

MonetDB now has a mmap trim thread that takes care of flushing the memory
mapped regions when MonetDB starts to consume too much main memory. Heaps
(that are randomly accessed) can be excluded from this mechanism, by pinning them.
BATmmap pin/unpin do this for all heaps of a BAT.

8.27.10 Heap Storage Modes

The discriminative storage modes are memory-mapped, compressed, or loaded in memory.
The BATmmap() changes the storage mode of each heap associated to a BAT. As can be
seen in the bat record, each BAT has one BUN-heap (bn), and possibly two heaps (hh
and th) for variable-sized atoms. The BATmadvise call works in the same way. Using
the madvise() system call it issues buffer management advise to the OS kernel, as for the
expected usage pattern of the memory in a heap.

8.27.11 Printing

int BATprintf (stream *f, BAT *b)
int BATmultiprintf (stream *f, int argc, BAT *b[], int printoid,

int order, int printorderby)

The functions to convert BATs into ASCII and the reverse use internally defined for-
mats. They are primarily meant for ease of debugging and to a lesser extent for output
processing. Printing a BAT is done essentially by looping through its components, printing
each association. If an index is available, it will be used. The BATmultiprintf command
assumes a set of BATs with corresponding oid-s in the head columns. It performs the
multijoin over them, and prints the multi-column result on the file.

8.27.12 BAT clustering

BAT * BATsort (BAT *b)
BAT * BATsort rev (BAT *b)
BAT * BATorder (BAT *b)
BAT * BATorder rev (BAT *b)
BAT * BATrevert (BAT *b)
int BATordered (BAT *b)

Chapter 8: The MAL Modules 164

When working in a main-memory situation, clustering of data on disk-pages is not im-
portant. Whenever mmap()-ed data is used intensively, reducing the number of page faults
is a hot issue.

The above functions rearrange data in MonetDB heaps (used for storing BUNs var-sized
atoms, or accelerators). Applying these clusterings will allow that MonetDB’s main-memory
oriented algorithms work efficiently also in a disk-oriented context.

The BATsort functions return a copy of the input BAT, sorted in ascending order on
the head column. BATordered starts a check on the head values to see if they are ordered.
The result is returned and stored in the hsorted field of the BAT. BATorder is similar to
BATsort, but sorts the BAT itself, rather than returning a copy (BEWARE: this operation
destroys the delta information. TODO:fix). The BATrevert puts all the live BUNs of a
BAT in reverse order. It just reverses the sequence, so this does not necessarily mean that
they are sorted in reverse order!

8.28 BAT Buffer Pool

int BBPfix (bat bi)
int BBPunfix (bat bi)
int BBPincref (bat bi, int logical)
int BBPdecref (bat bi, int logical)
void BBPhot (bat bi)
void BBPcold (bat bi)
str BBPname (bat bi)
bat BBPindex (str nme)
BAT* BATdescriptor (bat bi)
bat BBPcacheid (BAT *b)

The BAT Buffer Pool module contains the code to manage the storage location of BATs.
It uses two tables BBPlogical and BBphysical to relate the BAT name with its corresponding
file system name. This information is retained in an ASCII file within the database home
directory for ease of inspection. It is loaded upon restart of the server and saved upon
transaction commit (if necessary).

The remaining BBP tables contain status information to load, swap and migrate the
BATs. The core table is BBPcache which contains a pointer to the BAT descriptor with
its heaps. A zero entry means that the file resides on disk. Otherwise it has been read or
mapped into memory.

BATs loaded into memory are retained in a BAT buffer pool. They retain their position
within the cache during their life cycle, which make indexing BATs a stable operation.
Their descriptor can be obtained using BBPcacheid.

The BBPindex routine checks if a BAT with a certain name is registered in the buffer
pools. If so, it returns its BAT id. The BATdescriptor routine has a BAT id parameter,
and returns a pointer to the corresponding BAT record (after incrementing the reference
count). The BAT will be loaded into memory, if necessary.

8.29 GDK Extensibility

GDK can be extended with new atoms, search accelerators and storage modes.

Chapter 8: The MAL Modules 165

8.29.1 Atomic Type Descriptors

The atomic types over which the binary associations are maintained are described by an
atom descriptor.
void ATOMproperty (str nme, char *property, int (*fcn)(), int val);
int ATOMindex (char *nme);
int ATOMdump ();
void ATOMdelete (int id);
str ATOMname (int id);
int ATOMsize (int id);
int ATOMalign (int id);
int ATOMvarsized (int id);
ptr ATOMnilptr (int id);
int ATOMfromstr (int id, str s, int* len, ptr* v dst);
int ATOMtostr (int id, str s, int* len, ptr* v dst);
hash t ATOMhash (int id, ptr val, in mask);
int ATOMcmp (int id, ptr val 1, ptr val 2);
int ATOMconvert (int id, ptr v, int direction);
int ATOMfix (int id, ptr v);
int ATOMunfix (int id, ptr v);
int ATOMheap (int id, Heap *hp, size t cap);
void ATOMheapconvert (int id, Heap *hp, int direction);
int ATOMheapcheck (int id, Heap *hp, HeapRepair *hr);
int ATOMput (int id, Heap *hp, BUN pos dst, ptr val src);
int ATOMdel (int id, Heap *hp, BUN v src);
int ATOMlen (int id, ptr val);
ptr ATOMnil (int id);
int ATOMformat (int id, ptr val, char** buf);
int ATOMprint (int id, ptr val, stream *fd);
ptr ATOMdup (int id, ptr val);

8.29.2 Atom Definition

User defined atomic types can be added to a running system with the following interface:.
• ATOMproperty() registers a new atom definition, if there is no atom registered yet

under that name. It then installs the attribute of the named property. Valid names
are "size", "align", "null", "fromstr", "tostr", "cmp", "hash", "put", "get", "del",
"length" and "heap".

• ATOMdelete() unregisters an atom definition.
• ATOMindex() looks up the atom descriptor with a certain name.

8.29.3 Atom Manipulation

• The ATOMname() operation retrieves the name of an atom using its id.
• The ATOMsize() operation returns the atoms fixed size.
• The ATOMalign() operation returns the atoms minimum alignment. If the alignment

info was not specified explicitly during atom install, it assumes the maximum value of
{1,2,4,8} smaller than the atom size.

Chapter 8: The MAL Modules 166

• The ATOMnilptr() operation returns a pointer to the nil-value of an atom. We usually
take one dedicated value halfway down the negative extreme of the atom range (if such
a concept fits), as the nil value.

• The ATOMnil() operation returns a copy of the nil value, allocated with GDKmalloc().
• The ATOMheap() operation creates a new var-sized atom heap in ’hp’ with capacity

’cap’.
• The ATOMhash() computes a hash index for a value. ‘val’ is a direct pointer to the

atom value. Its return value should be an hash t between 0 and ’mask’.
• The ATOMcmp() operation computes two atomic values. Its parameters are pointers

to atomic values.
• The ATOMlen() operation computes the byte length for a value. ‘val’ is a direct pointer

to the atom value. Its return value should be an integer between 0 and ’mask’.
• The ATOMdel() operation deletes a var-sized atom from its heap ‘hp’. The integer

byte-index of this value in the heap is pointed to by ‘val src’.
• The ATOMput() operation inserts an atom ‘src val’ in a BUN at ‘dst pos’. This

involves copying the fixed sized part in the BUN. In case of a var-sized atom, this fixed
sized part is an integer byte-index into a heap of var-sized atoms. The atom is then
also copied into that heap ‘hp’.

• The ATOMfix() and ATOMunfix() operations do bookkeeping on the number of ref-
erences that a GDK application maintains to the atom. In MonetDB, we use this to
count the number of references directly, or through BATs that have columns of these
atoms. The only operator for which this is currently relevant is BAT. The operators
return the POST reference count to the atom. BATs with fixable atoms may not be
stored persistently.

• The ATOMfromstr() parses an atom value from string ‘s’. The memory allocation pol-
icy is the same as in ATOMget(). The return value is the number of parsed characters.

• The ATOMprint() prints an ASCII description of the atom value pointed to by ‘val’
on file descriptor ‘fd’. The return value is the number of parsed characters.

• The ATOMformat() is similar to ATOMprint(). It prints an atom on a newly allocated
string. It must later be freed with GDKfree. The number of characters written is
returned. This is minimally the size of the allocated buffer.

• The ATOMdup() makes a copy of the given atom. The storage needed for this is
allocated and should be removed by the user.

These wrapper functions correspond closely to the interface functions one has to provide
for a user-defined atom. They basically (with exception of ATOMput(), ATOMprint() and
ATOMformat()) just have the atom id parameter prepended to them.

8.29.4 Unique OIDs

oid OIDseed (oid seed);
oid OIDnew (oid inc);

OIDs are special kinds of unsigned integers because the system guarantees uniqueness.
For system simplicity and performance, OIDs are now represented as (signed) integers;
however this is hidden in the system internals and shouldn’t affect semantics.

Chapter 8: The MAL Modules 167

The OIDnew(N) claims a range of N contiguous unique, unused OIDs, and returns the
starting value of this range. The highest OIDBITS designate site. [DEPRECATED]

8.29.5 Built-in Accelerator Functions

BAT* BAThash (BAT *b, BUN masksize)
BAT * BAThashsplit (BAT *b, BUN n, int unary)
BAT * BATrangesplit (BAT *b, int n)

The current BAT implementation supports one search accelerator: hashing. The routine
BAThash makes sure that a hash accelerator on the head of the BAT exists. A zero is
returned upon failure to create the supportive structures.

The hash data structures are currently maintained during update operations.

A BAT can be redistributed over n buckets using a hash function with BAThashsplit.
The return value is a list of BAT pointers. Similarly, a range partitioning based is supported.

8.29.6 Multilevel Storage Modes

We should bring in the compressed mode as the first, maybe built-in, mode. We could than
add for instance HTTP remote storage, SQL storage, and READONLY (cd-rom) storage.

8.30 GDK Utilities

Interfaces for memory management, error handling, thread management and system infor-
mation.

8.30.1 GDK memory management

void* GDKmalloc (size t size)
void* GDKzalloc (size t size)
void* GDKmallocmax (size t size, size t *maxsize, int emergency)
void* GDKrealloc (void* pold, size t size)
void* GDKreallocmax (void* pold, size t size, size t *maxsize, int

emergency)
void GDKfree (void* blk)
str GDKstrdup (str s)
void* GDKvmalloc (size t size, size t *maxsize, int emergency)
void* GDKvmrealloc (void* pold, size t oldsize, size t newsize, size t old-

max, size t *maxsize, int emergency)
void GDKvmfree (void* blk, size t size, size t maxsize)

These utilities are primarily used to maintain control over critical interfaces to the C
library. Moreover, the statistic routines help in identifying performance and bottlenecks in
the current implementation.

Compiled with -DMEMLEAKS the GDK memory management log their activities, and
are checked on inconsistent frees and memory leaks.

8.30.2 GDK error handling

str GDKmessage
bit GDKsilent

Chapter 8: The MAL Modules 168

int GDKfatal(str msg)
int GDKwarning(str msg)
int GDKerror (str msg)
int GDKgoterrors ()
int GDKsyserror (str msg)
str GDKerrbuf

GDKsetbuf (str buf)
The error handling mechanism is not sophisticated yet. Experience should show if this

mechanism is sufficient. Most routines return a pointer with zero to indicate an error.
The error messages are also copied to standard output unless GDKsilent is set to a

non-zero value. The last error message is kept around in a global variable.
Error messages can also be collected in a user-provided buffer, instead of being echoed

to a stream. This is a thread-specific issue; you want to decide on the error mechanism on a
thread-specific basis. This effect is established with GDKsetbuf. The memory (de)allocation
of this buffer, that must at least be 1024 chars long, is entirely by the user. A pointer to
this buffer is kept in the pseudo-variable GDKerrbuf. Normally, this is a NULL pointer.

The GDKembedded variable is a property set in the configuration file to indicate that
the kernel is only allowed to run as a single process. This can be used to remove all locking
overhead. The actual state of affairs is maintained in GDKprotected, which is set when
locking is required, e.g. when multiple threads become active.

The kernel maintains a central table of all active threads. They are indexed by their tid.
The structure contains information on the input/output file descriptors, which should be
set before a database operation is started. It ensures that output is delivered to the proper
client. The Thread structure should be ideally made directly accessible to each thread.
This speeds up access to tid and file descriptors.

8.31 Transaction Management

int TMcommit ()
int TMabort ()
int TMsubcommit ()

MonetDB by default offers a global transaction environment. The global transaction
involves all activities on all persistent BATs by all threads. Each global transaction ends
with either TMabort or TMcommit, and immediately starts a new transaction. TMcommit
implements atomic commit to disk on the collection of all persistent BATs. For all persis-
tent BATs, the global commit also flushes the delta status for these BATs (see BATcom-
mit/BATabort). This allows to perform TMabort quickly in memory (without re-reading
all disk images from disk). The collection of which BATs is persistent is also part of the
global transaction state. All BATs that where persistent at the last commit, but were
made transient since then, are made persistent again by TMabort. In other words, BATs
that are deleted, are only physically deleted at TMcommit time. Until that time, rollback
(TMabort) is possible.

Use of TMabort is currently NOT RECOMMENDED due to two bugs:
• TMabort after a failed %TMcommit does not bring us back to the previous committed

state; but to the state at the failed TMcommit.

Chapter 8: The MAL Modules 169

• At runtime, TMabort does not undo BAT name changes, whereas a cold MonetDB
restart does.

In effect, the problems with TMabort reduce the functionality of the global transac-
tion mechanism to consistent checkpointing at each TMcommit. For many applications,
consistent checkpointingis enough.

Extension modules exist that provide fine grained locking (lock module) and Write Ahead
Logging (sqlserver). Applications that need more fine-grained transactions, should build this
on top of these extension primitives.

TMsubcommit is intended to quickly add or remove BATs from the persistent set. In
both cases, rollback is not necessary, such that the commit protocol can be accelerated. It
comes down to writing a new BBP.dir.

Its parameter is a BAT-of-BATs (in the tail); the persistence status of that BAT is
committed. We assume here that the calling thread has exclusive access to these bats. An
error is reported if you try to partially commit an already committed persistent BAT (it
needs the rollback mechanism).

8.31.1 Delta Management

BAT * BATcommit (BAT *b)
BAT * BATfakeCommit (BAT *b)
BAT * BATundo (BAT *b)
BAT * BATprev (BAT *b)
BAT * BATalpha (BAT *b)
BAT * BATdelta (BAT *b)

The BAT keeps track of updates with respect to a ’previous state’. Do not confuse
’previous state’ with ’stable’ or ’commited-on-disk’, because these concepts are not always
the same. In particular, they diverge when BATcommit, BATfakecommit, and BATundo
are called explictly, bypassing the normal global TMcommit protocol (some applications
need that flexibility).

BATcommit make the current BAT state the new ’stable state’. This happens inside the
global TMcommit on all persistent BATs previous to writing all bats to persistent storage
using a BBPsync[?].

EXPERT USE ONLY: The routine BATfakeCommit updates the delta information on
BATs and clears the dirty bit. This avoids any copying to disk. Expert usage only, as it
bypasses the global commit protocol, and changes may be lost after quitting or crashing
MonetDB.

BATabort undo-s all changes since the previous state. The global TMabort[?] achieves
a rollback to the previously committed state by doing BATabort on all persistent bats.

BUG: after a failed TMcommit, TMabort does not do anything because TMcommit does
the BATcommits before attempting to sync to disk instead of after doing this.

The previous state can also be queried. BATprev is a view on the current BAT as it was
in the previous state. BATalpha shows only the BUNs inserted since the previous state,
and BATdelta the deleted buns.

CAVEAT: BATprev, BATalpha and BATdelta only return views if the underlying BATs
are read-only (often not the case when BATs are being updated). Otherwise, copies must
be made anyway.

Chapter 8: The MAL Modules 170

8.32 BAT Alignment and BAT views

int ALIGNsynced (BAT* b1, BAT* b2)
int ALIGNsync (BAT *b1, BAT *b2)
int ALIGNrelated (BAT *b1, BAT *b2)
int ALIGNsetH ((BAT *dst, BAT *src)

BAT * BATpropcheck (BAT *b, int mode)

BAT* VIEWcreate (BAT *h, BAT *t)
int isVIEW (BAT *b)
bat VIEWhparent (BAT *b)
bat VIEWtparent (BAT *b)
BAT* VIEWhead (BAT *b)
BAT* VIEWcombine (BAT *b)
BAT* VIEWreset (BAT *b)
BAT* BATmaterialize (BAT *b)

Alignments of two columns of a BAT means that the system knows whether these two
columns are exactly equal. Relatedness of two BATs means that one pair of columns (either
head or tail) of both BATs is aligned. The first property is checked by ALIGNsynced, the
latter by ALIGNrelated.

The BATpropcheck examines a BAT and tries to set all applicable properties
(key,sorted,align,dense).

All algebraic BAT commands propagate the properties - including alignment properly
on their results.

VIEW BATs are BATs that lend their storage from a parent BAT. They are just a
descriptor that points to the data in this parent BAT. A view is created with VIEWcreate.
The cache id of the parent (if any) is returned by VIEWhparent and VIEWtparent (otherwise
it returns 0).

VIEW bats are read-only!!

The VIEWcombine gives a view on a BAT that has two head columns of the parent. The
VIEWhead constructs a BAT view that has the same head column as the parent, but has a
void column with seqbase=nil in the tail. VIEWreset creates a normal BAT with the same
contents as its view parameter (it converts void columns with seqbase!=nil to materialized
oid columns).

The BATmaterialize materializes a VIEW (TODO) or void bat inplace. This is useful
as materialization is usually needed for updates.

8.33 BAT Iterators

BATloop (BAT *b; BUN p, BUN q)
BATloopDEL (BAT *b; BUN p; BUN q; int dummy)
DELloop (BAT *b; BUN p, BUN q, int dummy)
HASHloop (BAT *b; Hash *h, size t dummy; ptr value)
HASHloop bit (BAT *b; Hash *h, size t idx; bit *value, BUN w)
HASHloop chr (BAT *b; Hash *h, size t idx; char *value, BUN w)

Chapter 8: The MAL Modules 171

HASHloop bte (BAT *b; Hash *h, size t idx; bte *value, BUN w)
HASHloop sht (BAT *b; Hash *h, size t idx; sht *value, BUN w)
HASHloop bat (BAT *b; Hash *h, size t idx; bat *value, BUN w)
HASHloop ptr (BAT *b; Hash *h, size t idx; ptr *value, BUN w)
HASHloop int (BAT *b; Hash *h, size t idx; int *value, BUN w)
HASHloop oid (BAT *b; Hash *h, size t idx; oid *value, BUN w)
HASHloop wrd (BAT *b; Hash *h, size t idx; wrd *value, BUN w)
HASHloop flt (BAT *b; Hash *h, size t idx; flt *value, BUN w)
HASHloop lng (BAT *b; Hash *h, size t idx; lng *value, BUN w)
HASHloop dbl (BAT *b; Hash *h, size t idx; dbl *value, BUN w)
HASHloop str (BAT *b; Hash *h, size t idx; str value, BUN w)
HASHlooploc (BAT *b; Hash *h, size t idx; ptr value, BUN w)
HASHloopvar (BAT *b; Hash *h, size t idx; ptr value, BUN w)
SORTloop (BAT *b,p,q,tl,th,s)

The BATloop() looks like a function call, but is actually a macro. The following example
gives an indication of how they are to be used:

void
print_a_bat(BAT *b)
{

BATiter bi = bat_iterator(b);
BUN p, q;

BATloop(b, p, q)
printf("Element %3d has value %d\n",

(int) BUNhead(bi, p), *(int*) BUNtail(bi, p));
}

8.33.1 simple sequential scan

The first parameter is a BAT, the p and q are BUN pointers, where p is the iteration
variable.

#define BATloop(r, p, q)
for(q = BUNlast(r), p = BUNfirst(r);p < q; p++)

8.33.2 batloop where the current element can be deleted/updated

Normally it is strictly forbidden to update the BAT over which is being iterated, or delete
the current element. This can only be done with the specialized batloop below. When doing
a delete, do not forget to update the current pointer with a p = BUNdelete(b,p) (the delete
may modify the current pointer p). After the delete/update has taken place, the pointer p
is in an inconsistent state till the next iteration of the batloop starts.

#define BATloopDEL(r, p, q)
for(p = BUNfirst(r), q = BUNlast(r); p < q;

q = MIN(q,BUNlast(r)), p++)

Chapter 8: The MAL Modules 172

8.33.3 sequential scan over deleted BUNs

Stable BUNS that were deleted, are conserved to transaction end. You may inspect these
data items. Again, the b is a BAT, p and q are BUNs, where p is the iteration variable.

#define DELloop(b, p, q)
for (q = (b)->batFirst, p = (b)->batDeleted; p < q; p++)

8.33.4 hash-table supported loop over BUNs

The first parameter ‘b’ is a BAT, the second (‘h’) should point to ‘b->H->hash’, and ‘v’ a
pointer to an atomic value (corresponding to the head column of ‘b’). The ’hb’ is an integer
index, pointing out the ‘hb’-th BUN.

#define GDK_STREQ(l,r) (*(char*) (l) == *(char*) (r) && !strcmp(l,r))

#define HASHloop(bi, h, hb, v)
for (hb = h->hash[HASHprobe(h, v)]; hb != BUN_NONE; hb = h->link[hb])
if (ATOMcmp(h->type, v, BUNhead(bi, hb)) == 0)

#define HASHloop_str(bi, h, hb, v)
for (hb = h->hash[strHash(v)&h->mask]; hb != BUN_NONE; hb = h->link[hb])
if (GDK_STREQ(v, BUNhvar(bi, hb)))

For string search, we can optimize if the string heap has eliminated all doubles. This is
the case when not too many different strings are stored in the heap. You can check this
with the macro strElimDoubles() If so, we can just compare integer index numbers instead
of strings:

#define HASHloop_fstr(bi, h, hb, idx, v)
for (hb = h->hash[strHash(v)&h->mask], idx = strLocate((bi.b)->hheap,v);

hb != BUN_NONE; hb = h->link[hb])
if (*(var_t*) BUNhloc(bi, hb) == idx)

The following example shows how the hashloop is used:

void
print_books(BAT *author_books, str author)
{

BAT *b = author_books;
BUN i;

printf("%s\n==================\n", author);
HASHloop(b, (b)->H->hash, i, author)

printf("%s\n", ((str) BUNtail(b, i));
}

Note that for optimization purposes, we could have used a HASHloop str instead, and
also a BUNtvar instead of a BUNtail (since we know the tail-type of author books is string,
hence variable-sized). However, this would make the code less general.

Chapter 8: The MAL Modules 173

8.33.5 specialized hashloops

HASHloops come in various flavors, from the general HASHloop, as above, to specialized
versions (for speed) where the type is known (e.g. HASHloop int), or the fact that the atom
is fixed-sized (HASHlooploc) or variable-sized (HASHloopvar).

#define HASHlooploc(bi, h, hb, v)
for (hb = h->hash[HASHprobe(h, v)]; hb != BUN_NONE; hb = h->link[hb])
if (ATOMcmp(h->type, v, BUNhloc(bi, hb)) == 0)

#define HASHloopvar(bi, h, hb, v)
for (hb = h->hash[HASHprobe(h, v)]; hb != BUN_NONE; hb = h->link[hb])
if (ATOMcmp(h->type, v, BUNhvar(bi, hb)) == 0)

8.33.6 loop over a BAT with ordered tail

Here we loop over a BAT with an ordered tail column (see for instance BATsort). Again, ’p’
and ’q’ are iteration variables, where ’p’ points at the current BUN. ’tl’ and ’th’ are pointers
to atom corresponding to the minimum (included) and maximum (included) bound in the
selected range of BUNs. A nil-value means that there is no bound. The ’s’ finally is an
integer denoting the bunsize, used for speed.

#define SORTloop(b,p,q,tl,th)
if (!(BATtordered(b)&1)) GDKerror("SORTloop: BAT not sorted. n");
else for (p = (ATOMcmp((b)->ttype,tl,ATOMnilptr((b)->ttype))?

SORTfndfirst(b,tl):BUNfirst(b)),
q = (ATOMcmp((b)->ttype,th,ATOMnilptr((b)->ttype))?

SORTfndlast(b,th):BUNlast(b)); p < q; p++)

/* OIDDEPEND */
#if SIZEOF_OID == SIZEOF_INT
#define SORTfnd_oid(b,v) SORTfnd_int(b,v)
#define SORTfndfirst_oid(b,v) SORTfndfirst_int(b,v)
#define SORTfndlast_oid(b,v) SORTfndlast_int(b,v)
sortloop[?.10](oid,int,oid,simple,&oid_nil)
#else
#define SORTfnd_oid(b,v) SORTfnd_lng(b,v)
#define SORTfndfirst_oid(b,v) SORTfndfirst_lng(b,v)
#define SORTfndlast_oid(b,v) SORTfndlast_lng(b,v)
sortloop[?.10](oid,lng,oid,simple,&oid_nil)
#endif
#if SIZEOF_WRD == SIZEOF_INT
#define SORTfnd_wrd(b,v) SORTfnd_int(b,v)
#define SORTfndfirst_wrd(b,v) SORTfndfirst_int(b,v)
#define SORTfndlast_wrd(b,v) SORTfndlast_int(b,v)
sortloop[?.10](wrd,int,wrd,simple,&wrd_nil)
#else
#define SORTfnd_wrd(b,v) SORTfnd_lng(b,v)
#define SORTfndfirst_wrd(b,v) SORTfndfirst_lng(b,v)
#define SORTfndlast_wrd(b,v) SORTfndlast_lng(b,v)
sortloop[?.10](wrd,lng,wrd,simple,&wrd_nil)

Chapter 8: The MAL Modules 174

#endif
#define SORTloop_bit(b,p,q,tl,th) SORTloop_chr(b,p,q,tl,th)

8.34 Common BAT Operations

Much used, but not necessarily kernel-operations on BATs.

8.34.1 BAT aggregates

BAT* BAThistogram(BAT *b)
BAT* BATsample(BAT* b,BUN n)

The routine BAThistogram produces a new BAT with a frequency distribution of the
tail of its operand.

The routine BATsample returns a random sample on n BUNs of a BAT.
For each BAT we maintain its dimensions as separately accessible properties. They can

be used to improve query processing at higher levels.

8.34.2 Alignment transformations

Some classes of algebraic operators transform a sequence in an input BAT always in the
same way in the output result. An example are the () function (including histogram(b),
which is identical to (b.reverse)). That is to say, if synced(b2,b2) => synced((b1),(b2))

Another example is b.fetch(position-bat). If synced(b2,b2) and the same position-bat is
fetched with, the results will again be synced. This can be mimicked by transforming the
alignment-id of the input BAT with a one-way function onto the result.

We use output->halign = NOID AGGR(input->halign) for the output = (input) case,
and output->align = NOID MULT(input1->align,input2->halign) for the fetch.

8.34.3 BAT relational operators

BAT * BATjoin (BAT *l, BAT *r, BUN estimate)
BAT * BATouterjoin (BAT *l, BAT *r, BUN estimate)
BAT * BATthetajoin (BAT *l, BAT *r, int mode, BUN estimate)
BAT * BATsemijoin (BAT *l, BAT *r)
BAT * BATselect (BAT *b, ptr tl, ptr th)
BAT * BATfragment (BAT *b, ptr l, ptr h, ptr L, ptr H)
BAT * BATsunique (BAT *b)
BAT * BATkunique (BAT *b)
BAT * BATsunion (BAT *b, BAT *c)
BAT * BATkunion (BAT *b, BAT *c)
BAT * BATsintersect (BAT *b, BAT *c)
BAT * BATkintersect (BAT *b, BAT *c)
BAT * BATsdiff (BAT *b, BAT *c)
BAT * BATkdiff (BAT *b, BAT *c)

The BAT library comes with a full-fledged collection of relational operators. The two
selection operators BATselect and BATfragment produce a partial copy of the BAT. The
former performs a search on the tail; the latter considers both dimensions. The BATse-
lect operation takes two inclusive ranges as search arguments. Interpretation of a NULL
argument depends on the position, i.e. a domain lower or upper bound.

Chapter 8: The MAL Modules 175

The operation BATsort sorts the BAT on the header and produces a new BAT. A side
effect is the clustering of the BAT store on the sort key.

The BATjoin over R[A, B] and S[C, D] performs an equi-join over B and C. It results
in a BAT over A and D. The BATouterjoin implements a left outerjoin over the BATs
involved. The BATsemijoin over R[A, B] and S[C, D] produces the subset of R[A, B] that
satisfies the semijoin over A and C.

The full-materialization policy intermediate results in MonetDB means that a join
can produce an arbitrarily large result and choke the system. The Data Distilleries
tool therefore first computes the join result size before the actual join (better waste
time than crash the server). To exploit that perfect result size knowledge, an result-size
estimate parameter was added to all equi-join implementations. TODO: add this for
semijoin/select/unique/diff/intersect

The routine BATsunique considers both dimensions in the double elimination it per-
forms; it produces a set. The routine BATtunique considers only the head column, and
produces a unique head column.

BATs that satisfy the set property can be further processed with the set operations
BATsunion, BATsintersect, and BATsdiff. The same operations are also available in ver-
sions that only look at the head column:BATkunion, BATkdiff, and BATkintersect (which
shares its implementation with BATsemijoin).

The kernel code modules are encapsulated with MAL wrappers. A synopsis of their
functionality is described below. The signature details can be found in the appendix.

8.35 Aggregates Module

This module contains some efficient aggregate functions that compute their result in one
scan, rather than in the iterative manner of the generic MIL aggregrate implementations.

The implementation code is derived from the original ’aggr’ module. It uses a complete
type-specific code expansion to avoid any type-checking in the inner-most loops. Where
feasible, it replaced (expansive) hash-lookup by significantly cheaper positional void-lookups
(if the head-column of the group-extend BAT ("e") is "void") or at least by (also positional)
array lookups (in case the group-ids span a reasonably small range);

In addition to the 2-parameter

8.36 Timers and Timed Interrupts

This module handles various signaling/timer functionalities. The Monet interface supports
two timer commands: alarm and sleep. Their argument is the number of seconds to wait
before the timer goes off. The sleep command blocks till the alarm goes off. The alarm
command continues directly, executes off a MIL string when it goes off. The parameterless
routines time and ctime provide access to the cpu clock.They return an integer and string,
respectively.

8.37 BAT Algebra

This modules contains the most common algebraic BAT manipulation commands. We call
them algebra, because all operations take values as parameters, and produce new result
values, but do not modify their parameters. Unlike the previous Monet versions, we reduce

Chapter 8: The MAL Modules 176

the number of functions returning a BAT reference. This was previously needed to simplify
recursive bat-expression and manage reference counts. In the current version we return only
a BAT identifier when a new bat is being created.

All parameters to the modules are passed by reference. In particular, this means that
string values are passed to the module layer as (str *) and we have to de-reference them
before entering the gdk library. This calls for knowlegde on the underlying BAT typs‘s

8.38 Basic array support

The array support library constructs the index arrays essential for the Relational Algebra
Model language. The grid filler operation assumes that there is enough space. The shift
variant multiplies all elements with a constant factor. It is a recurring operation for the
RAM front-end and will save an additional copying.

The optimization is captured in a contraction macro.

8.39 Binary Association Tables

This module contains the commands and patterns to manage Binary Association Tables
(BATs). The relational operations you can execute on BATs have the form of a neat
algebra, described in algebra.mx

But a database system needs more that just this algebra, since often it is crucial to do
table-updates (this would not be permitted in a strict algebra).

All commands needed for BAT updates, property management, basic I/O, persistence,
and storage options can be found in this module.

All parameters to the modules are passed by reference. In particular, this means that
string values are passed to the module layer as (str *) and we have to de-reference them
before entering the gdk library. (Actual a design error in gdk to differentiate passing int/str)
This calls for knowledge on the underlying BAT types‘s

8.39.1 Wrapping

The remainder contains the wrapper code over the version 4

8.40 InformationFunctions

In most cases we pass a BAT identifier, which should be unified with a BAT descriptor.
Upon failure we can simply abort the function.

The logical head type :oid is mapped to a TYPE void with sequenceBase. It represents
the old fashioned :vid

str
BKCnewBAT(int *res, int *ht, int *tt, BUN *cap)
{
BAT *b;

Chapter 8: The MAL Modules 177

if(*ht == TYPE_oid){
int tpe= TYPE_void;
if (CMDnew(&b, &tpe, tt, cap) == GDK_SUCCEED) {
oid o= 0;
BATseqbase(b, o);
*res = b->batCacheid;
BBPkeepref(*res);
return MAL_SUCCEED;
}
} else
if (CMDnew(&b, ht, tt, cap) == GDK_SUCCEED) {
*res = b->batCacheid;
BBPkeepref(*res);
return MAL_SUCCEED;
}
throw(MAL, "bat.new", GDK_EXCEPTION);
}

str
BKCattach(int *ret, int *tt, str *heapfile)
{
BAT *b;

if (CMDattach(&b, tt, *heapfile) == GDK_SUCCEED) {
*ret = b->batCacheid;
BBPkeepref(*ret);
return MAL_SUCCEED;
}
throw(MAL, "bat.attach", GDK_EXCEPTION);
}

str
BKCdensebat(int *ret, wrd *size)
{
BAT *b;

if (CMDdensebat(&b, size) == GDK_SUCCEED) {
*ret = b->batCacheid;
BBPkeepref(*ret);
return MAL_SUCCEED;
}
throw(MAL, "bat.densebat", GDK_EXCEPTION);
}

str
BKCreverse(int *ret, int *bid)
{

Chapter 8: The MAL Modules 178

BAT *b, *bn = NULL;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.reverse", RUNTIME_OBJECT_MISSING);
}

CMDreverse(&bn, b);
BBPreleaseref(b->batCacheid);
if (bn) {
*ret = bn->batCacheid;
BBPkeepref(bn->batCacheid);
return MAL_SUCCEED;
}
throw(MAL, "bat.reverse", GDK_EXCEPTION);
}

str
BKCmirror(int *ret, int *bid)
{
BAT *b, *bn = NULL;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.mirror", RUNTIME_OBJECT_MISSING);
}
if (CMDmirror(&bn, b) == GDK_SUCCEED) {
*ret = bn->batCacheid;
BBPkeepref(*ret);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}
*ret = 0;
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.mirror", GDK_EXCEPTION);
}

str
BKCrevert(int *ret, int *bid)
{
BAT *b, *bn;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.revert", RUNTIME_OBJECT_MISSING);
}
bn= BATrevert(b);
if(bn==NULL){
BBPkeepref(*ret= b->batCacheid);
throw(MAL, "bat.revert", GDK_EXCEPTION);

Chapter 8: The MAL Modules 179

}
BBPkeepref(*ret= bn->batCacheid);
return MAL_SUCCEED;
}

str
BKCorder(int *ret, int *bid)
{
BAT *b,*bn;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.order", RUNTIME_OBJECT_MISSING);
}
bn= BATorder(b);
if(bn==NULL){
BBPkeepref(*ret= b->batCacheid);
throw(MAL, "bat.order", GDK_EXCEPTION);
}
BBPkeepref(*ret= b->batCacheid);
return MAL_SUCCEED;
}

str
BKCorder_rev(int *ret, int *bid)
{
BAT *b,*bn;

(void) ret;
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.order_rev", RUNTIME_OBJECT_MISSING);
}
bn= BATorder_rev(b);
if(bn==NULL){
BBPkeepref(*ret= b->batCacheid);
throw(MAL, "bat.order_rev", GDK_EXCEPTION);
}
BBPkeepref(*ret= b->batCacheid);
return MAL_SUCCEED;
}

Insertions into the BAT may involve void types (=no storage required) These cases
should actually be captured during BUNins, because they may emerge internally as well.

void_insertbun ::=
if (b->@1type == TYPE_void && *(oid*) @1 != oid_nil &&

(oid) @1 != (b->@1seqbase + BUNgetpos(b, BUNlast(b))))
{

Chapter 8: The MAL Modules 180

printf("val " OIDFMT " seqbase " OIDFMT " pos " BUNFMT " n", *(oid*)@1,
b->@1seqbase, BUNgetpos(b, BUNlast(b)));

throw(MAL, "bat.insert", OPERATION_FAILED " Insert non-nil values in a void column.");
}

char *
BKCinsert_bun(int *r, int *bid, ptr h, ptr t)
{
BAT *i,*b;
int param=0;
(void) r;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.insert", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
derefStr[?.1](b,h,h)
derefStr[?.1](b,t,t)
BUNins(b, h, t,FALSE);
BBPkeepref(*r=b->batCacheid);
BBPreleaseref(i->batCacheid);
return MAL_SUCCEED;
}

char *
BKCinsert_bun_force(int *r, int *bid, ptr h, ptr t, bit *force)
{
BAT *i,*b;
int param=0;
(void) r;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.insert", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
derefStr[?.1](b,h,h)
derefStr[?.1](b,t,t)
BUNins(b, h, t, *force);
BBPkeepref(*r=b->batCacheid);
BBPreleaseref(i->batCacheid);
return MAL_SUCCEED;
}

str
BKCinsert_bat(int *r, int *bid, int *sid)
{

Chapter 8: The MAL Modules 181

BAT *i,*b, *s;
int param=0;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.insert", RUNTIME_OBJECT_MISSING);
}
if ((s = BATdescriptor(*sid)) == NULL) {
BBPreleaseref(i->batCacheid);
throw(MAL, "bat.insert", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
if (BATins(b, s,FALSE) == NULL) {
BBPkeepref(*r=b->batCacheid);
BBPreleaseref(s->batCacheid);
BBPreleaseref(i->batCacheid);
throw(MAL, "bat.insert", GDK_EXCEPTION);
}
BBPreleaseref(s->batCacheid);
BBPkeepref(*r=b->batCacheid);
BBPreleaseref(i->batCacheid);
return MAL_SUCCEED;
}

str
BKCinsert_bat_force(int *r, int *bid, int *sid, bit *force)
{
BAT *i,*b, *s;
int param=0;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.insert", RUNTIME_OBJECT_MISSING);
}
if ((s = BATdescriptor(*sid)) == NULL) {
BBPreleaseref(i->batCacheid);
throw(MAL, "bat.insert", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
if (BATins(b, s, *force) == NULL) {
BBPreleaseref(b->batCacheid);
BBPreleaseref(s->batCacheid);
BBPreleaseref(i->batCacheid);
throw(MAL, "bat.insert", GDK_EXCEPTION);
}
BBPkeepref(*r=b->batCacheid);
BBPreleaseref(s->batCacheid);
BBPreleaseref(i->batCacheid);
return MAL_SUCCEED;

Chapter 8: The MAL Modules 182

}

str
BKCreplace_bun(int *r, int *bid, ptr h, ptr t)
{
BAT *i,*b;
int param=0;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.replace", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
derefStr[?.1](b,h,h)
derefStr[?.1](b,t,t)
if (BUNreplace(b, h, t, 0) == NULL) {
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.replace", GDK_EXCEPTION);
}
BBPkeepref(*r=b->batCacheid);
BBPreleaseref(i->batCacheid);
return MAL_SUCCEED;
}

str
BKCreplace_bat(int *r, int *bid, int *sid)
{
BAT *i, *b, *bn, *s;
int param=0;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.replace", RUNTIME_OBJECT_MISSING);
}
if ((s = BATdescriptor(*sid)) == NULL) {
BBPreleaseref(i->batCacheid);
throw(MAL, "bat.replace", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
bn=BATreplace(b, s, 0);
if(bn && bn->batCacheid != b->batCacheid){
BBPreleaseref(i->batCacheid);
BBPreleaseref(s->batCacheid);
BBPreleaseref(b->batCacheid);
if(bn)
BBPreleaseref(bn->batCacheid);
throw(MAL, "bat.replace", OPERATION_FAILED "Different BAT returned");
}

Chapter 8: The MAL Modules 183

BBPkeepref(*r=bn->batCacheid);
BBPreleaseref(i->batCacheid);
BBPreleaseref(s->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCreplace_bun_force(int *r, int *bid, ptr h, ptr t, bit *force)
{
BAT *b, *bn;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.replace", RUNTIME_OBJECT_MISSING);
}
derefStr[?.1](b,h,h)
derefStr[?.1](b,t,t)
bn= BUNreplace(b, h, t, *force);
BBPreleaseref(b->batCacheid);
if(bn && bn->batCacheid != b->batCacheid)
throw(MAL, "bat.replace", OPERATION_FAILED "Different BAT returned");
BBPkeepref(*r=bn->batCacheid);
return MAL_SUCCEED;
}

str
BKCreplace_bat_force(int *r, int *bid, int *sid, bit *force)
{
BAT *b, *bn, *s;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.replace", RUNTIME_OBJECT_MISSING);
}
if ((s = BATdescriptor(*sid)) == NULL) {
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.replace", RUNTIME_OBJECT_MISSING);
}
bn= BATreplace(b, s, *force);
BBPreleaseref(s->batCacheid);
BBPreleaseref(b->batCacheid);
if(bn && bn->batCacheid != b->batCacheid)
throw(MAL, "bat.replace_bat", OPERATION_FAILED "Different BAT returned");
BBPkeepref(*r=bn->batCacheid);
return MAL_SUCCEED;
}

char *

Chapter 8: The MAL Modules 184

BKCdelete_bun(int *r, int *bid, ptr h, ptr t)
{
BAT *b, *bn;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}
derefStr[?.1](b,h,h)
derefStr[?.1](b,t,t)
bn= BUNdel(b, h, t,FALSE);
if(bn && bn->batCacheid != b->batCacheid)
throw(MAL, "bat.delete_bun", OPERATION_FAILED "Different BAT returned");
BBPkeepref(*r=bn->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

char *
BKCdelete(int *r, int *bid, ptr h)
{
BAT *b, *bn;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}
derefStr[?.1](b,h,h)
bn= BUNdelHead(b, h,FALSE);
if(bn && bn->batCacheid != b->batCacheid)
throw(MAL, "bat.delete", OPERATION_FAILED "Different BAT returned");
BBPkeepref(*r=bn->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCdelete_all(int *r, int *bid)
{
BAT *b, *bn;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}
bn=BATclear(b);
if(bn && bn->batCacheid != b->batCacheid){
BBPreleaseref(bn->batCacheid);
throw(MAL, "bat.delete_all", OPERATION_FAILED "Different BAT returned");
}

Chapter 8: The MAL Modules 185

BBPkeepref(*r=b->batCacheid);
return MAL_SUCCEED;
}

str
BKCdelete_bat_bun(int *r, int *bid, int *sid)
{
BAT *b, *bn, *s;

if(*bid == *sid)
return BKCdelete_all(r,bid);
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}
if ((s = BATdescriptor(*sid)) == NULL) {
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}

bn=BATdel(b, s,FALSE);
BBPreleaseref(s->batCacheid);
if(bn && bn->batCacheid != b->batCacheid)
throw(MAL, "bat.delete_bat_buns", OPERATION_FAILED "Different BAT returned");
BBPkeepref(*r=bn->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCdelete_bat(int *r, int *bid, int *sid)
{
BAT *i,*b, *s;
int param=0;

if ((i = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}
if ((s = BATdescriptor(*sid)) == NULL) {
BBPreleaseref(i->batCacheid);
throw(MAL, "bat.delete", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&b,i,¶m);
if (BATdelHead(b, s,FALSE) != NULL) {
BBPreleaseref(b->batCacheid);
BBPreleaseref(s->batCacheid);
return MAL_SUCCEED;
}

Chapter 8: The MAL Modules 186

BBPkeepref(*r=b->batCacheid);
BBPreleaseref(s->batCacheid);
BBPreleaseref(i->batCacheid);
return MAL_SUCCEED;
}

str
BKCdestroy_bat(bit *r, str *input)
{
CMDdestroy(r, *input);
return MAL_SUCCEED;
}

char *
BKCdestroyImmediate(signed char*r, int *bid)
{
BAT *b;
char buf[512];

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.destroy", RUNTIME_OBJECT_MISSING);
}
BBPlogical(b->batCacheid, buf);
BBPreleaseref(b->batCacheid);
CMDdestroy(r, buf);
return MAL_SUCCEED;
}

char *
BKCdestroy(signed char *r, int *bid)
{
BAT *b;

(void) r;
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.destroy", RUNTIME_OBJECT_MISSING);
}
*bid = 0;
BATmode(b, TRANSIENT);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

/* The SQL frontend uses void-head bats */
BUN
void_delete_bat(BAT *b, BAT *d, int delta)
{

Chapter 8: The MAL Modules 187

BATiter di = bat_iterator(d);
BUN nr = 0;
BUN r, s;
ptr nil = ATOMnilptr(b->ttype);

if (delta) {
for (r = d->batInserted; r < BUNlast(d); r++) {
oid delid = *(oid *) BUNtail(di, r);

void_inplace5(b, delid, nil, TRUE);
nr++;
}
} else {
BATloop(d, r, s) {
oid delid = *(oid *) BUNtail(di, r);

void_inplace5(b, delid, nil, TRUE);
nr++;
}
}
return nr;
}

BUN
void_insert_delta(BAT *b, BAT *u)
{
BATiter ui = bat_iterator(u);
BUN nr = 0;
BUN r;

for (r = u->batInserted; r < BUNlast(u); r++) {
BUNappend(b, BUNtail(ui, r),FALSE);
nr++;
}
return nr;
}

BUN
void_replace_delta(BAT *b, BAT *u)
{
BATiter ui = bat_iterator(u);
BUN nr = 0;
BUN r;

for (r = u->batInserted; r < BUNlast(u); r++) {
oid updid = *(oid *) BUNhead(ui, r);
ptr val = BUNtail(ui, r);

Chapter 8: The MAL Modules 188

void_inplace5(b, updid, val, TRUE);
nr++;
}
return nr;
}

char *
BKCappend_wrap(int *r, int *bid, int *uid)
{
BAT *b, *i, *u;
int param=0;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}
if ((u = BATdescriptor(*uid)) == NULL) {
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&i,b,¶m);
BATappend(i, u,FALSE);
BBPkeepref(*r=i->batCacheid);
BBPreleaseref(b->batCacheid);
BBPreleaseref(u->batCacheid);
return MAL_SUCCEED;
}

str
BKCappend_val_wrap(int *r, int *bid, ptr u)
{
BAT *i,*b;
int param=0;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}

derefStr[?.1](b,t,u)
CMDsetaccess(&i,b,¶m);
BUNappend(i, u,FALSE);
BBPkeepref(*r=i->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}
str
BKCappend_reverse_val_wrap(int *r, int *bid, ptr u)

Chapter 8: The MAL Modules 189

{
BAT *i,*b;
int param=0;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}

CMDsetaccess(&i,b,¶m);
derefStr[?.1](i,t,u)
BUNappend(BATmirror(i), u,FALSE);
BBPkeepref(*r=i->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

char *
BKCappend_force_wrap(int *r, int *bid, int *uid, bit *force)
{
BAT *b,*i, *u;
int param=0;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}
if ((u = BATdescriptor(*uid)) == NULL) {
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&i,b,¶m);
BATappend(i, u, *force);
BBPkeepref(*r=i->batCacheid);
BBPreleaseref(u->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCappend_val_force_wrap(int *r, int *bid, ptr u, bit *force)
{
BAT *b,*i;
int param=0;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.append", RUNTIME_OBJECT_MISSING);
}

Chapter 8: The MAL Modules 190

CMDsetaccess(&i,b,¶m);
derefStr[?.1](i,t,u)
BUNappend(i, u, *force);
BBPkeepref(*r=i->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCbun_inplace(int *r, int *bid, oid *id, ptr t)
{
BAT *o;

(void) r;
if ((o = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.inplace", RUNTIME_OBJECT_MISSING);
}
void_inplace5(o, *id, t,FALSE);
BBPreleaseref(o->batCacheid);
return MAL_SUCCEED;
}

str
BKCbun_inplace_force(int *r, int *bid, oid *id, ptr t, bit *force)
{
BAT *o;

(void) r;
if ((o = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.inplace", RUNTIME_OBJECT_MISSING);
}
void_inplace5(o, *id, t, *force);
BBPreleaseref(o->batCacheid);
return MAL_SUCCEED;
}

str
BKCbat_inplace(int *r, int *bid, int *rid)
{
BAT *o, *d;

(void) r;
if ((o = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.inplace", RUNTIME_OBJECT_MISSING);
}
if ((d = BATdescriptor(*rid)) == NULL) {
BBPreleaseref(o->batCacheid);

Chapter 8: The MAL Modules 191

throw(MAL, "bat.inplace", RUNTIME_OBJECT_MISSING);
}
void_replace_bat5(o, d,FALSE);
BBPreleaseref(o->batCacheid);
BBPreleaseref(d->batCacheid);
return MAL_SUCCEED;
}

str
BKCbat_inplace_force(int *r, int *bid, int *rid, bit *force)
{
BAT *o, *d;

(void) r;
if ((o = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.inplace", RUNTIME_OBJECT_MISSING);
}
if ((d = BATdescriptor(*rid)) == NULL) {
BBPreleaseref(o->batCacheid);
throw(MAL, "bat.inplace", RUNTIME_OBJECT_MISSING);
}
void_replace_bat5(o, d, *force);
BBPreleaseref(o->batCacheid);
BBPreleaseref(d->batCacheid);
return MAL_SUCCEED;
}

/*end of SQL enhancement */

char *
BKCgetAlpha(int *r, int *bid)
{
BAT *b, *c;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getInserted", RUNTIME_OBJECT_MISSING);
}
c = BATalpha(b);
*r = c->batCacheid;
BBPkeepref(c->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

char *
BKCgetDelta(int *r, int *bid)
{

Chapter 8: The MAL Modules 192

BAT *b, *c;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getDeleted", RUNTIME_OBJECT_MISSING);
}
c = BATdelta(b);
*r = c->batCacheid;
BBPkeepref(c->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCgetCapacity(lng *res, int *bid)
{
CMDcapacity(res, bid);
return MAL_SUCCEED;
}

str
BKCgetHeadType(str *res, int *bid)
{
CMDhead(res, bid);
return MAL_SUCCEED;
}

str
BKCgetTailType(str *res, int *bid)
{
CMDtail(res, bid);
return MAL_SUCCEED;
}

str
BKCgetRole(str *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getType", RUNTIME_OBJECT_MISSING);
}
*res = GDKstrdup((*bid > 0) ? b->hident : b->tident);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str

Chapter 8: The MAL Modules 193

BKCsetkey(int *res, int *bid, bit *param)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setKey", RUNTIME_OBJECT_MISSING);
}
BATkey(b, *param ? BOUND2BTRUE :FALSE);
*res = b->batCacheid;
BBPkeepref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCsetSet(int *res, int *bid, bit *param)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setSet", RUNTIME_OBJECT_MISSING);
}
BATset(b, *param ? BOUND2BTRUE :FALSE);
*res = b->batCacheid;
BBPkeepref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCisaSet(int *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isaSet", RUNTIME_OBJECT_MISSING);
}
*res = b->batSet;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCsetSorted(bit *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isSorted", RUNTIME_OBJECT_MISSING);

Chapter 8: The MAL Modules 194

}
CMDordered(res, b);
*res = BATordered(b) ? 1 : 0;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCisSorted(bit *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isSorted", RUNTIME_OBJECT_MISSING);
}
*res = BATordered(b) ? 1 : 0;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCisSortedReverse(bit *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isSorted", RUNTIME_OBJECT_MISSING);
}
*res = BATordered_rev(b) ? 1 : 0;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

We must take care of the special case of a nil column (TYPE void,seqbase=nil) such nil
columns never set hkey (and BUNins will never invalidate it if set) yet a nil column of a
BAT with <= 1 entries does not contain doubles => return TRUE.

str
BKCgetKey(bit *ret, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setPersistence", RUNTIME_OBJECT_MISSING);
}
CMDgetkey(ret, b);

Chapter 8: The MAL Modules 195

BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCpersists(int *r, int *bid, bit *flg)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setPersistence", RUNTIME_OBJECT_MISSING);
}
BATmode(b, (*flg == TRUE) ? PERSISTENT : (*flg ==FALSE) ? TRANSIENT : SESSION);
BBPreleaseref(b->batCacheid);
*r = 0;
return MAL_SUCCEED;
}

str
BKCsetPersistent(int *r, int *bid)
{
bit flag= TRUE;
return BKCpersists(r,bid, &flag);
}

str
BKCisPersistent(bit *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setPersistence", RUNTIME_OBJECT_MISSING);
}
*res = (b->batPersistence == PERSISTENT) ? TRUE :FALSE;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCsetTransient(int *r, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setTransient", RUNTIME_OBJECT_MISSING);
}
BATmode(b, TRANSIENT);

Chapter 8: The MAL Modules 196

*r = 0;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCisTransient(bit *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setTransient", RUNTIME_OBJECT_MISSING);
}
*res = b->batPersistence == TRANSIENT;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

accessMode_export ::=
bat5_export str BKCset@1(int *res, int *bid) ;
bat5_export str BKChas@1(bit *res, int *bid);

accessMode ::=
str BKCset@1(int *res, int *bid) {
BAT *b, *bn = NULL;
int param=@2;

if((b= BATdescriptor(*bid)) == NULL){
throw(MAL, "bat.set@1", RUNTIME_OBJECT_MISSING);

}
CMDsetaccess(&bn,b,¶m);
BBPkeepref(*res=bn->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}
str BKChas@1(bit *res, int *bid) {
BAT *b;

if((b= BATdescriptor(*bid)) == NULL){
throw(MAL, "bat.set@1", RUNTIME_OBJECT_MISSING);

}
*res = BATgetaccess(b)==’@3’;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

accessMode_export[?.2](WriteMode,0,w)
accessMode_export[?.2](ReadMode,1,r)
accessMode_export[?.2](AppendMode,2,a)

accessMode[?.2](WriteMode,0,w)

Chapter 8: The MAL Modules 197

accessMode[?.2](ReadMode,1,r)
accessMode[?.2](AppendMode,2,a)

str
BKCaccess(int *res, int *bid, int *m)
{
BAT *b, *bn = NULL;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setAccess", RUNTIME_OBJECT_MISSING);
}
CMDsetaccess(&bn, b, m);
*res = bn->batCacheid;
BBPkeepref(bn->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCsetAccess(int *res, int *bid, str *param)
{
BAT *b, *bn = NULL;
int m;
int oldid;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setAccess", RUNTIME_OBJECT_MISSING);
}
switch (*param[0]) {
case ’r’:
m = 1;
break;
case ’a’:
m = 2;
break;
case ’w’:
m = 0;
break;
default:
*res = 0;
throw(MAL, "bat.setAccess", ILLEGAL_ARGUMENT" Got %c" " expected ’r’,’a’, or ’w’", *param[0]);
}
/* CMDsetaccess(&bn, b, &m);*/

oldid= b->batCacheid;
bn = BATsetaccess(b, m);
if ((bn)->batCacheid == b->batCacheid) {

Chapter 8: The MAL Modules 198

BBPkeepref(bn->batCacheid);
} else {
BBPreleaseref(oldid);
BBPfix(bn->batCacheid);
BBPkeepref(bn->batCacheid);
}
*res = bn->batCacheid;
return MAL_SUCCEED;
}

str
BKCgetAccess(str *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getAccess", RUNTIME_OBJECT_MISSING);
}
switch (BATgetaccess(b)) {
case 1:
*res = GDKstrdup("read");
break;
case 2:
*res = GDKstrdup("append");
break;
case 0:
*res = GDKstrdup("write");
break;
}
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

8.40.1 Property management

All property operators should ensure exclusive access to the BAT descriptor. Where neces-
sary use the primary view to access the properties

str
BKCinfo(int *retval, int *bid)
{
BAT *bn = NULL, *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getInfo", RUNTIME_OBJECT_MISSING);
}
if (CMDinfo(&bn, b) == GDK_SUCCEED) {

Chapter 8: The MAL Modules 199

*retval = bn->batCacheid;
BBPkeepref(bn->batCacheid);
BBPreleaseref(*bid);
return MAL_SUCCEED;
}
BBPreleaseref(*bid);
BBPreleaseref(b->batCacheid);
throw(MAL, "BKCinfo", GDK_EXCEPTION);
}

str
BKCbatdisksize(lng *tot, int *bid){
BAT *b;
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getDiskSize", RUNTIME_OBJECT_MISSING);
}
CMDbatdisksize(tot,b);
BBPreleaseref(*bid);
return MAL_SUCCEED;
}

str
BKCbatvmsize(lng *tot, int *bid){
BAT *b;
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getDiskSize", RUNTIME_OBJECT_MISSING);
}
CMDbatvmsize(tot,b);
BBPreleaseref(*bid);
return MAL_SUCCEED;
}

str
BKCbatsize(lng *tot, int *bid){
BAT *b;
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getDiskSize", RUNTIME_OBJECT_MISSING);
}
CMDbatsize(tot,b, FALSE);
BBPreleaseref(*bid);
return MAL_SUCCEED;
}

str
BKCgetStorageSize(lng *tot, int *bid)
{
BAT *b;

Chapter 8: The MAL Modules 200

if ((b = BATdescriptor(*bid)) == NULL)
throw(MAL, "bat.getStorageSize", RUNTIME_OBJECT_MISSING);
CMDbatsize(tot,b,TRUE);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}
str
BKCgetSpaceUsed(lng *tot, int *bid)
{
BAT *b;
size_t size = sizeof(BATstore);

if ((b = BATdescriptor(*bid)) == NULL)
throw(MAL, "bat.getSpaceUsed", RUNTIME_OBJECT_MISSING);

if (!isVIEW(b)) {
BUN cnt = BATcount(b);

size += headsize(b, cnt);
size += tailsize(b, cnt);
/* the upperbound is used for the heaps */
if (b->hheap)
size += b->hheap->size;
if (b->theap)
size += b->theap->size;
if (b->H->hash)
size += sizeof(BUN) * cnt;
if (b->T->hash)
size += sizeof(BUN) * cnt;

}
*tot = size;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCgetStorageSize_str(lng *tot, str batname)
{
int bid = BBPindex(batname);

if (bid == 0)
throw(MAL, "bat.getStorageSize", RUNTIME_OBJECT_MISSING);
return BKCgetStorageSize(tot, &bid);
}

Chapter 8: The MAL Modules 201

8.41 Synced BATs

str
BKCisSynced(bit *ret, int *bid1, int *bid2)
{
BAT *b1, *b2;

if ((b1 = BATdescriptor(*bid1)) == NULL) {
throw(MAL, "bat.isSynced", RUNTIME_OBJECT_MISSING);
}
if ((b2 = BATdescriptor(*bid2)) == NULL) {
BBPreleaseref(b1->batCacheid);
throw(MAL, "bat.isSynced", RUNTIME_OBJECT_MISSING);
}
CMDsynced(ret, b1, b2);
BBPreleaseref(b1->batCacheid);
BBPreleaseref(b2->batCacheid);
return MAL_SUCCEED;
}

8.42 Role Management

char *
BKCsetRole(int *r, int *bid, char **hname, char **tname)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setRole", RUNTIME_OBJECT_MISSING);
}
if (hname == 0 || *hname == 0 || **hname == 0){
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.setRole", ILLEGAL_ARGUMENT " Head name missing");
}
if (tname == 0 || *tname == 0 || **tname == 0){
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.setRole", ILLEGAL_ARGUMENT " Tail name missing");
}
BATroles(b, *hname, *tname);
BBPreleaseref(b->batCacheid);
*r = 0;
return MAL_SUCCEED;
}

str
BKCsetColumn(int *r, int *bid, str *tname)
{

Chapter 8: The MAL Modules 202

BAT *b;
str dummy;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setColumn", RUNTIME_OBJECT_MISSING);
}
if (tname == 0 || *tname == 0 || **tname == 0){
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.setColumn", ILLEGAL_ARGUMENT " Column name missing");
}
/* watch out, hident is freed first */
dummy= GDKstrdup(b->hident);
BATroles(b, dummy, *tname);
GDKfree(dummy);
BBPreleaseref(b->batCacheid);
*r =0;
return MAL_SUCCEED;
}

str
BKCsetColumns(int *r, int *bid, str *hname, str *tname)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setColumns", RUNTIME_OBJECT_MISSING);
}
if (hname == 0 || *hname == 0 || **hname == 0){
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.setRole", ILLEGAL_ARGUMENT " Head name missing");
}
if (tname == 0 || *tname == 0 || **tname == 0){
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.setRole", ILLEGAL_ARGUMENT " Tail name missing");
}
BATroles(b, *hname, *tname);
BBPreleaseref(b->batCacheid);
*r =0;
return MAL_SUCCEED;
}

str
BKCsetName(int *r, int *bid, str *s)
{
BAT *b;
bit res, *rp = &res;

Chapter 8: The MAL Modules 203

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setName", RUNTIME_OBJECT_MISSING);
}
CMDrename(rp, b, *s);
BBPreleaseref(b->batCacheid);
*r = 0;
return MAL_SUCCEED;
}

str
BKCgetBBPname(str *ret, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.getName", RUNTIME_OBJECT_MISSING);
}
*ret = GDKstrdup(BBPname(b->batCacheid));
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCunload(bit *res, str *input)
{
CMDunload(res, *input);
return MAL_SUCCEED;
}

str
BKCisCached(int *res, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isCached", RUNTIME_OBJECT_MISSING);
}
*res = 0;
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.isCached", PROGRAM_NYI);
}

str
BKCload(int *res, str *input)
{
bat bid = BBPindex(*input);

Chapter 8: The MAL Modules 204

*res = bid;
if (bid) {
BBPincref(bid,TRUE);
return MAL_SUCCEED;
}
throw(MAL, "bat.unload", ILLEGAL_ARGUMENT " File name missing");
}

str
BKChot(int *res, str *input)
{
(void) res; /* fool compiler */
BBPhot(BBPindex(*input));
return MAL_SUCCEED;
}

str
BKCcold(int *res, str *input)
{
(void) res; /* fool compiler */
BBPcold(BBPindex(*input));
return MAL_SUCCEED;
}

str
BKCcoldBAT(int *res, int *bid)
{
BAT *b;

(void) res;
(void) bid; /* fool compiler */
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isCached", RUNTIME_OBJECT_MISSING);
}
BBPcold(b->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCheat(int *res, str *input)
{
int bid = BBPindex(*input);

if (bid) {
*res = BBP_lastused(bid) & 0x7fffffff;

Chapter 8: The MAL Modules 205

}
throw(MAL, "bat", PROGRAM_NYI);
}

str
BKChotBAT(int *res, int *bid)
{
BAT *b;

(void) res;
(void) bid; /* fool compiler */
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.isCached", RUNTIME_OBJECT_MISSING);
}
BBPhot(b->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCsave(bit *res, str *input)
{
CMDsave(res, *input);
return MAL_SUCCEED;
}

str
BKCsave2(int *r, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.save", RUNTIME_OBJECT_MISSING);
}

if (b && BATdirty(b))
BBPsave(b);
BBPreleaseref(b->batCacheid);
*r = 0;
return MAL_SUCCEED;
}

str
BKCmmap(int *res, int *bid, int *hbns, int *tbns, int *hhp, int *thp)
{
BAT *b, *bn = NULL;

Chapter 8: The MAL Modules 206

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.mmap", RUNTIME_OBJECT_MISSING);
}
if (CMDmmap(&bn, b, hbns, tbns, hhp, thp) == GDK_SUCCEED) {
*res = TRUE;
BBPreleaseref(bn->batCacheid);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}
*res =FALSE;
BBPreleaseref(b->batCacheid);
throw(MAL, "bat.mmap", GDK_EXCEPTION);
}

str
BKCmmap2(int *res, int *bid, int *mode)
{
return BKCmmap(res, bid, mode, mode, mode, mode);
}

str
BKCmadvise(int *res, int *bid, int *hbns, int *tbns, int *hhp, int *thp)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.madvice", RUNTIME_OBJECT_MISSING);
}
*res = BATmadvise(b, (*hbns == int_nil) ? -1 : *hbns, (*tbns == int_nil) ? -1 : *tbns, (*hhp == int_nil) ? -1 : *hhp, (*thp == int_nil) ? -1 : *thp);
BBPreleaseref(b->batCacheid);
if (*res)
throw(MAL, "bat.madvise", GDK_EXCEPTION);
return MAL_SUCCEED;
}

str
BKCmadvise2(int *res, int *bid, int *mode)
{
return BKCmadvise(res, bid, mode, mode, mode, mode);
}

8.43 Accelerator Control

str
BKCaccbuild(int *ret, int *bid, str *acc, ptr *param)

Chapter 8: The MAL Modules 207

{
(void) bid;
(void) acc;
(void) param;
*ret = TRUE;
throw(MAL, "Accelerator", PROGRAM_NYI);
}

str
BKCaccbuild_std(int *ret, int *bid, int *acc)
{
(void) bid;
(void) acc;
*ret = TRUE;
throw(MAL, "Accelerator", PROGRAM_NYI);
}

str
BKCsetHash(bit *ret, int *bid, bit *prop)
{
BAT *b;

(void) ret;
(void) prop; /* fool compiler */
if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setHash", RUNTIME_OBJECT_MISSING);
}
BAThash(b, 0);
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

str
BKCsetSequenceBase(int *r, int *bid, oid *o)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setSequenceBase", RUNTIME_OBJECT_MISSING);
}
BATseqbase(b, *o);
*r = b->batCacheid;
BBPkeepref(b->batCacheid);
return MAL_SUCCEED;
}

Chapter 8: The MAL Modules 208

str
BKCsetSequenceBaseNil(int *r, int *bid, oid *o)
{
oid ov = oid_nil;

(void) o;
return BKCsetSequenceBase(r, bid, &ov);
}

str
BKCgetSequenceBase(oid *r, int *bid)
{
BAT *b;

if ((b = BATdescriptor(*bid)) == NULL) {
throw(MAL, "bat.setSequenceBase", RUNTIME_OBJECT_MISSING);
}
*r = b->hseqbase;
BBPreleaseref(b->batCacheid);
return MAL_SUCCEED;
}

8.44 BAT calculator

Many applications require extension of the basic calculator and mathematic functions to
work on BAT arguments. Although the MAL multiplex optimizer contains a command
(’optimizer.multiplex’) to generate the necessary code, it is often much more efficient to use
one of the dedidacted batcalc functions introduced below.

The operators supported are limited to the built-in fixed length atoms, because they
permit ease of storage of the operation result. Variable sized atoms, especially user de-
fined, may require more administrative activities. Furthermore, the operands involved are
assumed to be aligned to assure the fastest possible join evaluation.

Optimal processing performance is further obtained when the operators can work as
’accumulators’, for then we do not pay the price of space allocation for a new intermediate.
It may imply a BATcopy before the accummulator function is being called. A new BAT is
of course created when the result of a function does not fit the accumulator.

The implementation does not take into account possible overflows caused by the oper-
ators. However, the operators respect the NIL semantics and division by zero produces a
NIL.

In addition to arithmetic and comparison operators, casting and mathematical functions
are directly supported.

8.45 NULL semantics

The batcalc arithmetic is already constraint to BATs of equal size. Another improvement
is obtained when we do not have to check for NULLs in each and every basic operation

Chapter 8: The MAL Modules 209

+,-,/,* and comparisons. A problem is to propagate the general ’nonil’ property, because
this depends on the semantics of the operator. Checking the result for a nil value depleats
most of the expected gain.

Currently only set for the NOT operation and comparisons operators when neither ar-
gument has nils.

8.46 BAT Coercion Routines

The coercion routines over BATs can not easily be speed up using an accumulator approach,
because they often require different storage space. Nevertheless, the implementation pro-
vided here are much faster compared to the Version 4.* implementation.

The coercion routines are build for speed. They are not protected against overflow.

8.47 BAT if-then-else multiplex expressions.

The assembled code for IF-THEN-ELSE multiplex operations. Again we assume that the
BAT arguments are aligned.

8.48 Color multiplexes

[TODO: property propagations and general testing] The collection of routines provided here
are map operations for the color string primitives.

In line with the batcalc module, we assume that if two bat operands are provided that
they are already aligned on the head. Moreover, the head of the BATs are limited to :oid,
which can be cheaply realized using the GRPsplit operation.

8.49 String multiplexes

[TODO: property propagations] The collection of routines provided here are map operations
for the atom string primitives.

In line with the batcalc module, we assume that if two bat operands are provided that
they are already aligned on the head. Moreover, the head of the BATs are limited to :void,
which can be cheaply realized using the GRPsplit operation.

8.50 BAT math calculator

This module contains the multiplex versions of the linked in mathematical functions.

8.51 The math module

This module contains the math commands. The implementation is very simply, the c math
library functions are called. See for documentation the ANSI-C/POSIX manuals of the
equaly named functions.

NOTE: the operand itself is being modified, rather than that we produce a new BAT.
This to save the expensive copying.

Chapter 8: The MAL Modules 210

8.52 Time/Date multiplexes

[TODO: arithmetic multiplexes] The collection of routines provided here are map operations
for the atom time and date primitives.

In line with the batcalc module, we assume that if two bat operands are provided that
they are already aligned on the head. Moreover, the head of the BATs are limited to :void,
which can be cheaply realized using the GRPsplit operation.

8.53 Basic arithmetic

This module is an extended version of the V4 arithmetic module. It implements the arith-
metic operations on the built-in types, chr, bte, sht, int, flt, dbl and lng. All combinations
are implemented. Limited combinations are implemented for bit, oid and str.

[binary operators]
The implemented operators are first of all all comparison that return a
TRUE/FALSE value (bit values), i.e. <=, <, ==, !=, >=, and >=.
The module also implements the operators +, -, * and /. The rules for the
return types operators is as follows. If one of the input types is a floating point
the result will be a floating point. The largest type of the input types is taken.
The max and min functions return the maximum and minimum of the two
input parameters.

[unary operators]
This module also implements the unary abs() function, which calculates the
absolute value of the given input parameter, as well as the - unary operator.
The inv unary operation calculates the inverse of the input value. An error
message is given when the input value is zero.

[bitwise operators]
For integers there are some additional operations. The % operator implements
the congruent modulo operation. The << and >> are the left and right bit
shift. The or, and, xor and not for integers are implemented as bitwise boolean
operations.

[boolean operators]
The or, and, xor and not for the bit atomic type in MIL (this corresponds to
what is normally called boolean) are implemented as the logic operations.

[random numbers]
This module also contains the rand and srand functions. The srand() function
initializes the random number generator using a seed value. The subsequent
calls to rand() are pseudo random numbers (with the same seed the sequence
can be repeated).

The general interpretation for the NIL value is "unknown". This semantics mean that
any operation that receives at least one NIL value, will produce a NIL value in the output
for sure.

The only exception to this rule are the "==" and "!=" equality test routines (it would
otherwise become rather difficult to test whether a value is nil).

Chapter 8: The MAL Modules 211

8.54 Performance Counters

This is a memory/cpu performance measurement tool for the following processor (families).

• MIPS R10000/R12000 (IP27)

• Sun UltraSparcI/II (sun4u)

• Intel Pentium (i586/P5)

• Intel PentiumPro/PentiumII/PentiumIII/Celeron (i686/P6)

• AMD Athlon (i686/K7)

• Intel Itanium/Itanium2 (ia64)

It uses

• libperfmon libperfex (IRIX) for R10000/R12000,

• (Solaris <= 7) by Richard Enbody, libcpc (Solaris >= 8) for UltraSparcI/II,

• libperfctr (Linux-i?86 >= 2.4), by M. Pettersson for Pentiums & Athlons.

• libpfm (Linux-ia64 >= 2.4), by HP for Itanium[2].

Module counters provides similar interface and facilities as Peter’s R10000 perfex module,
but it offers no multiplexing of several events; only two events can be monitored at a
time. On non-Linux/x86, non-Solaris/UltraSparc, and non-IRIX/R1x000 systems, only the
elapsed time in microseconds is measured.

8.55 The group module

This module contains the primitives to construct, derive, and perform statistical operations
on BATs representing groups. The default scheme in Monet is to assume the head to
represent the group identifier and the tail an element in the group.

Groups play an important role in datamining, where they are used to construct cross-
tables. Such cross tables over a single BAT are already supported by the histogram function.
This module provides extensions to support identification of groups in a (multi-)dimensional
space.

The module implementation has a long history. The first implementation provided sev-
eral alternatives to produce/derive the grouping. A more complete (and complex) scheme
was derived during its extensive use in the context of the Data Distilleries product. The
current implementation is partly a cleanup of this code-base, but also enables provides bet-
ter access to the intermediate structures produced in the process, i.e. the histogram and
the sub-group mapping. They can be used for various optimization schemes at the MAL
level.

The prime limitation of the current implementation is that an underlying database of
oid->any BATs is assumed. This enables representation of each group using an oid, and
the value representation of the group can be accordingly be retrieved easily. An optimized
implementation in which we use positional integer id’s (as embodied by Monet’s void type)
is also available.

This limitation on (v)oid-headers is marginal. The primitive GRPsplit produces for any
BAT two copies with both a (v)oid header.

http://www.cse.msu.edu/~enbody/perfmon.html
http://user.it.uu.se/~mikpe/linux/perfctr/
http://www.hpl.hp.com/research/linux/perfmon/

Chapter 8: The MAL Modules 212

8.55.1 Algorithms

There are several approaches to build a cross table. The one chosen here is aimed at
incremental construction, such that re-use of intermediates becomes possible. Starting with
the first dimension, a BAT is derived to represent the various groups, called a GRP BAT
or cross-table BAT.

8.55.2 Cross Table (GRP)

A cross table is an <oid,oid> BAT where the first (head) denotes a tuple in the cross table
and the second (tail) marks all identical lists. The tail-oids contain group identifiers; that
is, this value is equal iff two tuples belong to the same group. The group identifiers are
chosen from the domain of the tuple-identifiers. This simplifies getting back to the original
tuples, when talking about a group. If the tuple-oid of ’John’ is chosen as a group-id, you
might view this as saying that each member of the group is ’like John’ with respect to the
grouping-criterion.

Successively the subgroups can be identified by modifying the GRP BAT or to derive a
new GRP BAT for the subgroups. After all groups have been identified this way, a BAT
histogram operation can be used to obtain the counts of each data cube. Other aggregation
operations using the MIL set aggregate construct (bat) can be used as well; note for
instance that histogram == (b.reverse()).

The Monet interface module specification is shown below. Ideally we should defined
stronger type constraints, e.g. command group.new(attr:bat[,:any 1]

The group macro is split along three dimensions:

[type:] Type specific implementation for selecting the right hash function and
data size etc.;

[clustered:] The select the appropriate algorithm, i.e., with or without taking ad-
vantage of an order of values in the parent groups;

[physical
properties:]

Values , choosing between a fixed predefined and a custom hashmask.
Custom allows the user to determine the size of the hashmask (and
indirectly the estimated size of the result). The hashmask is 2n − 1
where n is given by the user, or 1023 otherwise, and the derived result
size is 4 . . . 2n.

Further research should point out whether fitting a simple statistical model (possibly a
simple mixture model) can help choose these parameters automatically; the current idea
is that the user (which could be a domain-specific extension of the higher-level language)
knows the properties of the data, especially for IR in which the standard grouping settings
differ significantly from the original datamining application.

8.56 Lightweight Lock Module

This module provides simple SMP lock and thread functionality as already present in the
MonetDB system.

This module provides simple SMP lock and thread functionality as already present in
the MonetDB system.

Chapter 8: The MAL Modules 213

8.57 The Transaction Logger

In the philosophy of MonetDB, transaction management overhead should only be paid when
necessary. Transaction management is for this purpose implemented as a separate module
and applications are required to obey the transaction policy, e.g. obtaining/releasing locks.

This module is designed to support efficient logging of the SQL database. Once loaded,
the SQL compiler will insert the proper calls at transaction commit to include the changes
in the log file.

The logger uses a directory to store its log files. One master log file stores information
about the version of the logger and the transaction log files. This file is a simple ascii file
with the following format: 6DIGIT-VERSION\n[log file number \n]*]* The transaction
log files have a binary format, which stores fixed size logformat headers (flag,nr,bid), where
the flag is the type of update logged. The nr field indicates how many changes there were
(in case of inserts/deletes). The bid stores the bid identifier.

The key decision to be made by the user is the location of the log file. Ideally, it should
be stored in fail-safe environment, or at least the log and databases should be on separate
disk columns.

This file system may reside on the same hardware as the database server and therefore
the writes are done to the same disk, but could also reside on another system and then the
changes are flushed through the network. The logger works under the assumption that it
is called to safeguard updates on the database when it has an exclusive lock on the latest
version. This lock should be guaranteed by the calling transaction manager first.

Finding the updates applied to a BAT is relatively easy, because each BAT contains a
delta structure. On commit these changes are written to the log file and the delta manage-
ment is reset. Since each commit is written to the same log file, the beginning and end are
marked by a log identifier.

A server restart should only (re)process blocks which are completely written to disk. A
log replay therefore ends in a commit or abort on the changed bats. Once all logs have been
read, the changes to the bats are made persistent, i.e. a bbp sub-commit is done.

8.58 Multi-Attribute Equi-Join

8.59 Priority queues

This module includes functions for accessing and updating a pqueue. A pqueue is an
(oid,any) bat. The tail is used as a comparison key. The first element of the pqueue is the
smallest one in a min-pqueue or the largest one in a max-pqueue. Each element is larger
than (smaller than) or equal to its parent which is defined by (position/2) if position is odd
or (position-1)/2 if position is even (positions are from 0 to n-1). The head of the bat is
used to keep track of the object-ids which are organized in the heap with respect to their
values (tail column).

8.60 System state information

This document introduces a series of bats and operations that provide access to information
stored within the Monet Version 5 internal data structures. In all cases, pseudo BAT
operation returns a transient BAT that should be garbage collected after being used.

Chapter 8: The MAL Modules 214

The main performance drain would be to use a pseudo BAT directly to successively
access it components. This can be avoided by first assigning the pseudo BAT to a variable.

8.61 Unix standard library calls

The unix module is currently of rather limited size. It should include only those facilities
that are UNIX specific, i.e. not portable to other platforms. Similar modules may be
defined for Windows platforms.

Chapter 9: Application Programming Interfaces 215

9 Application Programming Interfaces

MonetDB comes with a complete set of programming libraries. Their basis is the MonetDB
application programming interface (Mapi), which describes the protocol understood by the
server. The Perl, PHP, and Python libraries are mostly wrappers around the Mapi routines.

The programming interface is based on a client-server architecture, where the client pro-
gram connects to a server using a TCP/IP connection to exchange commands and receives
answers. The underlying protocol uses plain UTF-8 data for ease of use and debugging.
This leads to publicly visible information exchange over a network, which may be undesir-
able. Therefore, a private and secure channel can be set up with the Secure Socket Layer
functionality.

A more tightly connection between application logic and database server is described in
Section 1.77.6 [Embedded Server], page 39.

9.1 The Mapi Library

The easiest way to extend the functionality of MonetDB is to construct an independent
application, which communicates with a running server using a database driver with a simple
API and a textual protocol. The effectiveness of such an approach has been demonstrated
by the wide use of database API implementations, such as Perl DBI, PHP, ODBC,...

9.1.1 Sample MAPI Application

The database driver implementation given in this document focuses on developing applica-
tions in C. The command collection has been chosen to align with common practice, i.e.
queries follow a prepare, execute, and fetch row paradigm. The output is considered a
regular table. An example of a mini application below illustrates the main operations.

#include <mapilib/Mapi.h>
#include <stdio.h>
#include <stdlib.h>

void die(Mapi dbh, MapiHdl hdl)
{

if (hdl != NULL) {
mapi_explain_query(hdl, stderr);
do {

if (mapi_result_error(hdl) != NULL)
mapi_explain_result(hdl, stderr);

} while (mapi_next_result(hdl) == 1);
mapi_close_handle(hdl);
mapi_destroy(dbh);

} else if (dbh != NULL) {
mapi_explain(dbh, stderr);
mapi_destroy(dbh);

} else {
fprintf(stderr, "command failed\n");

}

Chapter 9: Application Programming Interfaces 216

exit(-1);
}

MapiHdl query(Mapi dbh, char *q)
{

MapiHdl ret = NULL;
if ((ret = mapi_query(dbh, q)) == NULL || mapi_error(dbh) != MOK)

die(dbh, ret);
return(ret);

}

void update(Mapi dbh, char *q)
{

MapiHdl ret = query(dbh, q);
if (mapi_close_handle(ret) != MOK)

die(dbh, ret);
}

int main(int argc, char *argv[])
{

Mapi dbh;
MapiHdl hdl = NULL;

char *name;
char *age;

dbh = mapi_connect("localhost", 50000, "monetdb", "monetdb", "sql", "demo");
if (mapi_error(dbh))

die(dbh, hdl);

update(dbh, "CREATE TABLE emp (name VARCHAR(20), age INT)");
update(dbh, "INSERT INTO emp VALUES (’John’, 23)");
update(dbh, "INSERT INTO emp VALUES (’Mary’, 22)");

hdl = query(dbh, "SELECT * FROM emp");

while (mapi_fetch_row(hdl)) {
name = mapi_fetch_field(hdl, 0);
age = mapi_fetch_field(hdl, 1);
printf("%s is %s\n", name, age);

}

mapi_close_handle(hdl);
mapi_destroy(dbh);

return(0);
}

Chapter 9: Application Programming Interfaces 217

The mapi_connect() operation establishes a communication channel with a running
server. The query language interface is either "sql", "mil" or "xquery".

Errors on the interaction can be captured using mapi_error(), possibly followed by a
request to dump a short error message explanation on a standard file location. It has been
abstracted away in a macro.

Provided we can establish a connection, the interaction proceeds as in many similar
application development packages. Queries are shipped for execution using mapi_query()
and an answer table can be consumed one row at a time. In many cases these functions
suffice.

The Mapi interface provides caching of rows at the client side. mapi_query() will load
tuples into the cache, after which they can be read repeatedly using mapi_fetch_row() or
directly accessed (mapi_seek_row()). This facility is particularly handy when small, but
stable query results are repeatedly used in the client program.

To ease communication between application code and the cache entries, the user can bind
the C-variables both for input and output to the query parameters, and output columns,
respectively. The query parameters are indicated by ’?’ and may appear anywhere in the
query template.

The Mapi library expects complete lines from the server as answers to query actions.
Incomplete lines leads to Mapi waiting forever on the server. Thus formatted printing is
discouraged in favor of tabular printing as offered by the table.print() commands.

The following action is needed to get a working program. Compilation of the application
relies on the monetdb-config program shipped with the distribution. It localizes the include
files and library directories. Once properly installed, the application can be compiled and
linked as follows:

cc sample.c ‘monetdb-clients-config --cflags --libs‘ -lMapi -o sample
./sample

It assumes that the dynamic loadable libraries are in public places. If, however, the
system is installed in your private environment then the following option can be used on
most ELF platforms.

cc sample.c ‘monetdb-clients-config --cflags --libs‘ -lMapi -o sample \
‘monetdb-clients-config --libs | sed -e’s:-L:-R:g’‘
./sample

The compilation on Windows is slightly more complicated. It requires more attention
towards the location of the include files and libraries.

9.1.2 Command Summary

The quick reference guide to the Mapi library is given below. More details on their con-
straints and defaults are given in the next section.
mapi bind() Bind string C-variable to a field
mapi bind numeric() Bind numeric C-variable to field
mapi bind var() Bind typed C-variable to a field
mapi cache freeup() Forcefully shuffle fraction for cache refreshment
mapi cache limit() Set the tuple cache limit
mapi cache shuffle() Set shuffle fraction for cache refreshment

Chapter 9: Application Programming Interfaces 218

mapi clear bindings() Clear all field bindings
mapi clear params() Clear all parameter bindings
mapi close handle() Close query handle and free resources
mapi connect() Connect to a Mserver
mapi destroy() Free handle resources
mapi disconnect() Disconnect from server
mapi error() Test for error occurrence
mapi execute() Execute a query
mapi execute array() Execute a query using string arguments
mapi explain() Display error message and context on stream
mapi explain query() Display error message and context on stream
mapi fetch all rows() Fetch all answers from server into cache
mapi fetch field() Fetch a field from the current row
mapi fetch field array() Fetch all fields from the current row
mapi fetch line() Retrieve the next line
mapi fetch reset() Set the cache reader to the beginning
mapi fetch row() Fetch row of values
mapi finish() Terminate the current query
mapi get dbname() Database being served
mapi get field count() Number of fields in current row
mapi get host() Host name of server
mapi get query() Query being executed
mapi get language() Query language name
mapi get mapi version() Mapi version name
mapi get monet versionId()MonetDB version identifier
mapi get monet version()MonetDB version name
mapi get motd() Get server welcome message
mapi get row count() Number of rows in cache or -1
mapi get last id() last inserted id of an auto increment (or alike) column
mapi get trace() Get trace flag
mapi get user() Current user name
mapi log() Keep log of client/server interaction
mapi next result() Go to next result set
mapi needmore() Return whether more data is needed
mapi ping() Test server for accessibility
mapi prepare() Prepare a query for execution
mapi prepare array() Prepare a query for execution using arguments
mapi query() Send a query for execution
mapi query array() Send a query for execution with arguments
mapi query handle() Send a query for execution
mapi quick query array()Send a query for execution with arguments
mapi quick query() Send a query for execution
mapi quick response() Quick pass response to stream
mapi quote() Escape characters
mapi reconnect() Reconnect with a clean session context
mapi rows affected() Obtain number of rows changed
mapi seek row() Move row reader to specific location in cache

Chapter 9: Application Programming Interfaces 219

mapi setAutocommit() Set auto-commit flag
mapi setAlgebra() Use algebra backend
mapi stream query() Send query and prepare for reading tuple stream
mapi table() Get current table name
mapi timeout() Set timeout for long-running queries[TODO]
mapi output() Set output format
mapi stream into() Stream document into server
mapi profile() Set profile flag
mapi trace() Set trace flag
mapi virtual result() Submit a virtual result set
mapi unquote() remove escaped characters

9.1.3 Library Synopsis

The routines to build a MonetDB application are grouped in the library MonetDB Pro-
gramming Interface, or shorthand Mapi.

The protocol information is stored in a Mapi interface descriptor (mid). This descriptor
can be used to ship queries, which return a MapiHdl to represent the query answer. The
application can set up several channels with the same or a different mserver. It is the
programmer’s responsibility not to mix the descriptors in retrieving the results.

The application may be multi-threaded as long as the user respects the individual con-
nections represented by the database handlers.

The interface assumes a cautious user, who understands and has experience with the
query or programming language model. It should also be clear that references returned by
the API point directly into the administrative structures of Mapi. This means that they
are valid only for a short period, mostly between successive mapi_fetch_row() commands.
It also means that it the values are to retained, they have to be copied. A defensive
programming style is advised.

Upon an error, the routines mapi_explain() and mapi_explain_query() give informa-
tion about the context of the failed call, including the expression shipped and any response
received. The side-effect is clearing the error status.

9.1.4 Error Message

Almost every call can fail since the connection with the database server can fail at any time.
Functions that return a handle (either Mapi or MapiHdl) may return NULL on failure, or
they may return the handle with the error flag set. If the function returns a non-NULL
handle, always check for errors with mapi error.

Functions that return MapiMsg indicate success and failure with the following codes.

MOK No error
MERROR Mapi internal error.
MTIMEOUT Error communicating with the server.

When these functions return MERROR or MTIMEOUT, an explanation of the error
can be had by calling one of the functions mapi_error_str(), mapi_explain(), or mapi_
explain_query().

Chapter 9: Application Programming Interfaces 220

To check for error messages from the server, call mapi_result_error(). This function
returns NULL if there was no error, or the error message if there was. A user-friendly
message can be printed using map_explain_result(). Typical usage is:
do {

if ((error = mapi_result_error(hdl)) != NULL)
mapi_explain_result(hdl, stderr);

while ((line = mapi_fetch_line(hdl)) != NULL)
/* use output */;

} while (mapi_next_result(hdl) == 1);

9.1.5 Mapi Function Reference

9.1.6 Connecting and Disconnecting

• Mapi mapi connect(const char *host, int port, const char *username, const char *pass-
word, const char *lang, const char *dbname)
Setup a connection with a Mserver at a host :port and login with username and pass-
word. If host == NULL, the local host is accessed. If host starts with a ’/’ and the
system supports it, host is actually the name of a UNIX domain socket, and port is ig-
nored. If port == 0, a default port is used. If username == NULL, the username of the
owner of the client application containing the Mapi code is used. If password == NULL,
the password is omitted. The preferred query language is any of {sql,mil,mal,xquery
}. On success, the function returns a pointer to a structure with administration about
the connection.

• MapiMsg mapi disconnect(Mapi mid)
Terminate the session described by mid. The only possible uses of the handle after this
call is mapi destroy() and mapi_reconnect(). Other uses lead to failure.

• MapiMsg mapi destroy(Mapi mid)
Terminate the session described by mid if not already done so, and free all resources.
The handle cannot be used anymore.

• MapiMsg mapi reconnect(Mapi mid)
Close the current channel (if still open) and re-establish a fresh connection. This will
remove all global session variables.

• MapiMsg mapi ping(Mapi mid)
Test availability of the server. Returns zero upon success.

9.1.7 Sending Queries

• MapiHdl mapi query(Mapi mid, const char *Command)
Send the Command to the database server represented by mid. This function returns
a query handle with which the results of the query can be retrieved. The handle
should be closed with mapi_close_handle(). The command response is buffered for
consumption, c.f. mapi\ fetch\ row().

• MapiMsg mapi query handle(MapiHdl hdl, const char *Command)
Send the Command to the database server represented by hdl, reusing the handle from
a previous query. If Command is zero it takes the last query string kept around. The
command response is buffered for consumption, e.g. mapi_fetch_row().

Chapter 9: Application Programming Interfaces 221

• MapiHdl mapi query array(Mapi mid, const char *Command, char **argv)
Send the Command to the database server replacing the placeholders (?) by the string
arguments presented.

• MapiHdl mapi quick query(Mapi mid, const char *Command, FILE *fd)
Similar to mapi_query(), except that the response of the server is copied immediately
to the file indicated.

• MapiHdl mapi quick query array(Mapi mid, const char *Command, char **argv, FILE
*fd)
Similar to mapi_query_array(), except that the response of the server is not analyzed,
but shipped immediately to the file indicated.

• MapiHdl mapi stream query(Mapi mid, const char *Command, int windowsize)
Send the request for processing and fetch a limited number of tuples (determined by
the window size) to assess any erroneous situation. Thereafter, prepare for continual
reading of tuples from the stream, until an error occurs. Each time a tuple arrives, the
cache is shifted one.

• MapiHdl mapi prepare(Mapi mid, const char *Command)
Move the query to a newly allocated query handle (which is returned). Possibly interact
with the back-end to prepare the query for execution.

• MapiMsg mapi execute(MapiHdl hdl)
Ship a previously prepared command to the backend for execution. A single answer is
pre-fetched to detect any runtime error. MOK is returned upon success.

• MapiMsg mapi execute array(MapiHdl hdl, char **argv)
Similar to mapi_execute but replacing the placeholders for the string values provided.

• MapiMsg mapi finish(MapiHdl hdl)
Terminate a query. This routine is used in the rare cases that consumption of the tuple
stream produced should be prematurely terminated. It is automatically called when a
new query using the same query handle is shipped to the database and when the query
handle is closed with mapi_close_handle().

• MapiMsg mapi virtual result(MapiHdl hdl, int columns, const char **columnnames,
const char **columntypes, const int *columnlengths, int tuplecount, const char ***tu-
ples)
Submit a table of results to the library that can then subsequently be accessed as if
it came from the server. columns is the number of columns of the result set and must
be greater than zero. columnnames is a list of pointers to strings giving the names of
the individual columns. Each pointer may be NULL and columnnames may be NULL
if there are no names. tuplecount is the length (number of rows) of the result set. If
tuplecount is less than zero, the number of rows is determined by a NULL pointer in
the list of tuples pointers. tuples is a list of pointers to row values. Each row value is a
list of pointers to strings giving the individual results. If one of these pointers is NULL
it indicates a NULL/nil value.

9.1.8 Getting Results

• int mapi get field count(MapiHdl mid)
Return the number of fields in the current row.

Chapter 9: Application Programming Interfaces 222

• mapi int64 mapi get row count(MapiHdl mid)
If possible, return the number of rows in the last select call. A -1 is returned if this
information is not available.

• mapi int64 mapi get last id(MapiHdl mid)
If possible, return the last inserted id of auto increment (or alike) column. A -1 is
returned if this information is not available. We restrict this to single row inserts and
one auto increment column per table. If the restrictions do not hold, the result is
unspecified.

• mapi int64 mapi rows affected(MapiHdl hdl)
Return the number of rows affected by a database update command such as SQL’s
INSERT/DELETE/UPDATE statements.

• int mapi fetch row(MapiHdl hdl)
Retrieve a row from the server. The text retrieved is kept around in a buffer linked with
the query handle from which selective fields can be extracted. It returns the number of
fields recognized. A zero is returned upon encountering end of sequence or error. This
can be analyzed in using mapi_error().

• mapi int64 mapi fetch all rows(MapiHdl hdl)
All rows are cached at the client side first. Subsequent calls to mapi_fetch_row() will
take the row from the cache. The number or rows cached is returned.

• int mapi quick response(MapiHdl hdl, FILE *fd)
Read the answer to a query and pass the results verbatim to a stream. The result is
not analyzed or cached.

• MapiMsg mapi seek row(MapiHdl hdl, mapi int64 rownr, int whence)
Reset the row pointer to the requested row number. If whence is MAPI_SEEK_SET,
rownr is the absolute row number (0 being the first row); if whence is MAPI_SEEK_CUR,
rownr is relative to the current row; if whence is MAPI_SEEK_END, rownr is relative to
the last row.

• MapiMsg mapi fetch reset(MapiHdl hdl)
Reset the row pointer to the first line in the cache. This need not be a tuple. This is
mostly used in combination with fetching all tuples at once.

• char **mapi fetch field array(MapiHdl hdl)
Return an array of string pointers to the individual fields. A zero is returned upon
encountering end of sequence or error. This can be analyzed in using mapi_error().

• char *mapi fetch field(MapiHdl hdl, int fnr)
Return a pointer a C-string representation of the value returned. A zero is returned
upon encountering an error or when the database value is NULL; this can be analyzed
in using mapi_error().

• MapiMsg mapi next result(MapiHdl hdl)
Go to the next result set, discarding the rest of the output of the current result set.

9.1.9 Errors

• MapiMsg mapi error(Mapi mid)
Return the last error code or 0 if there is no error.

Chapter 9: Application Programming Interfaces 223

• char *mapi error str(Mapi mid)

Return a pointer to the last error message.

• char *mapi result error(MapiHdl hdl)

Return a pointer to the last error message from the server.

• MapiMsg mapi explain(Mapi mid, FILE *fd)

Write the error message obtained from mserver to a file.

• MapiMsg mapi explain query(MapiHdl hdl, FILE *fd)

Write the error message obtained from mserver to a file.

• MapiMsg mapi explain result(MapiHdl hdl, FILE *fd)

Write the error message obtained from mserver to a file.

9.1.10 Parameters

• MapiMsg mapi bind(MapiHdl hdl, int fldnr, char **val)

Bind a string variable with a field in the return table. Upon a successful subsequent
mapi_fetch_row() the indicated field is stored in the space pointed to by val. Re-
turns an error if the field identified does not exist.

• MapiMsg mapi bind var(MapiHdl hdl, int fldnr, int type, void *val)

Bind a variable to a field in the return table. Upon a successful subsequent
mapi_fetch_row(), the indicated field is converted to the given type and stored in
the space pointed to by val. The types recognized are { MAPI_TINY, MAPI_UTINY,
MAPI_SHORT, MAPI_USHORT, MAPI_INT, MAPI_UINT, MAPI_LONG, MAPI_ULONG,
MAPI_LONGLONG, MAPI_ULONGLONG, MAPI_CHAR, MAPI_VARCHAR, MAPI_FLOAT,
MAPI_DOUBLE, MAPI_DATE, MAPI_TIME, MAPI_DATETIME }. The binding operations
should be performed after the mapi execute command. Subsequently all rows being
fetched also involve delivery of the field values in the C-variables using proper
conversion. For variable length strings a pointer is set into the cache.

• MapiMsg mapi bind numeric(MapiHdl hdl, int fldnr, int scale, int precision, void *val)

Bind to a numeric variable, internally represented by MAPI INT Describe the location
of a numeric parameter in a query template.

• MapiMsg mapi clear bindings(MapiHdl hdl)

Clear all field bindings.

• MapiMsg mapi param(MapiHdl hdl, int fldnr, char **val)

Bind a string variable with the n-th placeholder in the query template. No conversion
takes place.

• MapiMsg mapi param type(MapiHdl hdl, int fldnr, int ctype, int sqltype, void *val)

Bind a variable whose type is described by ctype to a parameter whose type is described
by sqltype.

• MapiMsg mapi param numeric(MapiHdl hdl, int fldnr, int scale, int precision, void
*val)

Bind to a numeric variable, internally represented by MAPI INT.

Chapter 9: Application Programming Interfaces 224

• MapiMsg mapi param string(MapiHdl hdl, int fldnr, int sqltype, char *val, int *sizeptr)
Bind a string variable, internally represented by MAPI VARCHAR, to a parameter.
The sizeptr parameter points to the length of the string pointed to by val. If sizeptr
== NULL or *sizeptr == -1, the string is NULL-terminated.

• MapiMsg mapi clear params(MapiHdl hdl)
Clear all parameter bindings.

9.1.11 Miscellaneous

• MapiMsg mapi setAutocommit(Mapi mid, int autocommit)
Set the autocommit flag (default is on). This only has an effect when the language is
SQL. In that case, the server commits after each statement sent to the server.

• MapiMsg mapi\ setAlgebra(Mapi mid, int algebra)
Tell the backend to use or stop using the algebra-based compiler.

• MapiMsg mapi cache limit(Mapi mid, int maxrows)
A limited number of tuples are pre-fetched after each execute(). If maxrows is neg-
ative, all rows will be fetched before the application is permitted to continue. Once
the cache is filled, a number of tuples are shuffled to make room for new ones, but
taking into account non-read elements. Filling the cache quicker than reading leads to
an error.

• MapiMsg mapi cache shuffle(MapiHdl hdl, int percentage)
Make room in the cache by shuffling percentage tuples out of the cache. It is sometimes
handy to do so, for example, when your application is stream-based and you process
each tuple as it arrives and still need a limited look-back. This percentage can be set
between 0 to 100. Making shuffle= 100% (default) leads to paging behavior, while
shuffle==1 leads to a sliding window over a tuple stream with 1% refreshing.

• MapiMsg mapi cache freeup(MapiHdl hdl, int percentage)
Forcefully shuffle the cache making room for new rows. It ignores the read counter, so
rows may be lost.

• char * mapi quote(const char *str, int size)
Escape special characters such as \n, \t in str with backslashes. The returned value is
a newly allocated string which should be freed by the caller.

• char * mapi unquote(const char *name)
The reverse action of mapi_quote(), turning the database representation into a C-
representation. The storage space is dynamically created and should be freed after
use.

• MapiMsg mapi output(Mapi mid, char *output)
Set the output format for results send by the server.

• MapiMsg mapi stream into(Mapi mid, char *docname, char *colname, FILE *fp)
Stream a document into the server. The name of the document is specified in docname,
the collection is optionally specified in colname (if NULL, it defaults to docname), and
the content of the document comes from fp.

• MapiMsg mapi profile(Mapi mid, int flag)
Set the profile flag to time commands send to the server.

Chapter 9: Application Programming Interfaces 225

• MapiMsg mapi trace(Mapi mid, int flag)
Set the trace flag to monitor interaction of the client with the library. It is primarilly
used for debugging Mapi applications.

• int mapi get trace(Mapi mid)
Return the current value of the trace flag.

• MapiMsg mapi\ log(Mapi mid, const char *fname)
Log the interaction between the client and server for offline inspection. Beware that
the log file overwrites any previous log. For detailed interaction trace with the Mapi
library itself use mapi\ trace().

The remaining operations are wrappers around the data structures maintained. Note
that column properties are derived from the table output returned from the server.
• char *mapi get name(MapiHdl hdl, int fnr)
• char *mapi get type(MapiHdl hdl, int fnr)
• char *mapi get table(MapiHdl hdl, int fnr)
• int mapi get len(Mapi mid, int fnr)
• char *mapi get dbname(Mapi mid)
• char *mapi get host(Mapi mid)
• char *mapi get user(Mapi mid)
• char *mapi get lang(Mapi mid)
• char *mapi get motd(Mapi mid)

9.2 MonetDB Perl Library

Perl is one of the more common scripting languages for which a ’standard’ database appli-
cation programming interface is defined. It is called DBI and it was designed to protect
you from the API library details of multiple DBMS vendors. It has a very simple interface
to execute SQL queries and for processing the results sent back. DBI doesn’t know how to
talk to any particular database, but it does know how to locate and load in DBD (‘Data-
base Driver’) modules. The DBD modules encapsulate the interface library’s intricacies and
knows how to talk to the real databases.

MonetDB comes with its own DBD module which is included in both the source and
binary distribution packages. The module is also available via CPAN.

Two sample Perl applications are included in the source distribution; a MIL session and
a simple client to interact with a running server.

For further documentation we refer to the Perl community home page.

9.2.1 A Simple Perl Example

use strict;
use warnings;
use DBI();

print "\nStart a simple Monet MIL interaction\n\n";

"http://cpan.perl.org/"
"http://www.perl.org"

Chapter 9: Application Programming Interfaces 226

determine the data sources:
my @ds = DBI->data_sources(’monetdb’);
print "data sources: @ds\n";

connect to the database:
my $dsn = ’dbi:monetdb:database=test;host=localhost;port=50000;language=mil’;
my $dbh = DBI->connect($dsn,
undef, undef, # no authentication in MIL
{ PrintError => 0, RaiseError => 1 } # turn on exception handling

);
{
simple MIL statement:
my $sth = $dbh->prepare(’print(2);’);
$sth->execute;
my @row = $sth->fetchrow_array;
print "field[0]: $row[0], last index: $#row\n";

}
{
my $sth = $dbh->prepare(’print(3);’);
$sth->execute;
my @row = $sth->fetchrow_array;
print "field[0]: $row[0], last index: $#row\n";

}
{
deliberately executing a wrong MIL statement:
my $sth = $dbh->prepare(’(xyz 1);’);
eval { $sth->execute }; print "ERROR REPORTED: $@" if $@;

}
$dbh->do(’var b:=new(int,str);’);
$dbh->do(’insert(b,3,"three");’);
{
variable binding stuff:
my $sth = $dbh->prepare(’insert(b,?,?);’);
$sth->bind_param(1, 7 , DBI::SQL_INTEGER());
$sth->bind_param(2,’seven’);
$sth->execute;

}
{
my $sth = $dbh->prepare(’print(b);’);
get all rows one at a time:
$sth->execute;
while (my $row = $sth->fetch) {

print "bun: $row->[0], $row->[1]\n";
}
get all rows at once:
$sth->execute;
my $t = $sth->fetchall_arrayref;

Chapter 9: Application Programming Interfaces 227

my $r = @$t; # row count
my $f = @{$t->[0]}; # field count
print "rows: $r, fields: $f\n";
for my $i (0 .. $r-1) {

for my $j (0 .. $f-1) {
print "field[$i,$j]: $t->[$i][$j]\n";

}
}

}
{
get values of the first column from each row:
my $row = $dbh->selectcol_arrayref(’print(b);’);
print "head[$_]: $row->[$_]\n" for 0 .. 1;

}
{
my @row = $dbh->selectrow_array(’print(b);’);
print "field[0]: $row[0]\n";
print "field[1]: $row[1]\n";

}
{
my $row = $dbh->selectrow_arrayref(’print(b);’);
print "field[0]: $row->[0]\n";
print "field[1]: $row->[1]\n";

}
$dbh->disconnect;
print "\nFinished\n";

9.3 MonetDB PHP Library

The MonetDB distribution comes with a MAPI based PHP interface For general compilation
of MonetDB see the howto’s for Unix and Linux. The unix configure process normally tries
to detect if you have PHP including developer packages installed and builds the PHP module
only if you have it. With the –with-php option you could tell ’configure’ where to find the
PHP installation.

When the build process is complete you should have a PHP extension dir under your
MonetDB prefix directory. Usually this is prefix/lib(64)/php5. It contains the loadable
php module, lib/php5/monetdb.dll.

Depending on your local setup you could now use these files by coping them into the
system extension dir or with a private webserver you could simply reset the environment
variables, include path and extension dir. For example you could have a php.ini file which
has the following php section.

[PHP]
safe_mode = Off
safe_mode_gid = Off
extension_dir = /opt/MonetDB-4.6/lib(64)/php4

Chapter 9: Application Programming Interfaces 228

9.3.1 A Simple PHP Example

A tiny example of the use the MonetDB PHP module follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"" xml:lang="en" lang="en">

<head>
<title>MonetDB Query</title>

</head>

<body>
<?php

if (isset($_POST[’query’]))
{

$db = monetdb_connect(’sql’, ’localhost’, 50000, ’monetdb’,
’monetdb’)

or die(’Failed to connect to MonetDB
’);

$sql = stripslashes($_POST[’query’]);
$res = monetdb_query($sql);
while ($row = monetdb_fetch_assoc($res))
{

print "<pre>\n";
print_r($row);
print "</pre>\n";

}
}

print "<form method=\"post\" action=\"{$_SERVER[’PHP_SELF’]}\">\n";
print "<label for=\"query\">SQL Query:</label>\n";
print "<input type=\"text\" name=\"query\" id=\"query\"

value=\"{$_POST[’query’]}\" />\n";
print "<input type=\"submit\" value=\"Execute\" />\n";
print "</form>\n";

?>
</body>

</html>

More examples can be found in the sources.

The PHP module is aligned with the PostgreSQL implementation. A synopsis of the
operations provided:

• proto resource monetdb connect([string host [, string port [, string username [, string
password [, string language]]]]]) Open a MonetDB connection

• proto resource monetdb pconnect([string host [, string port [, string username [, string

Chapter 9: Application Programming Interfaces 229

password [, string language]]]]]) Open a persistent MonetDB connection
• proto bool monetdb close([resource connection]) Close a MonetDB connection
• proto string monetdb dbname([resource connection]) Get the database name
• proto string monetdb last error([resource connection]) Get the error message string
• proto string monetdb host([resource connection]) Returns the host name associated

with the connection
• proto array monetdb version([resource connection]) Returns an array with client, pro-

tocol and server version (when available)
• proto bool monetdb ping([resource connection]) Ping database. If connection is bad,

try to reconnect.
• proto resource monetdb query([resource connection,] string query) Execute a query
• proto resource monetdb query params([resource connection,] string query, array

params) Execute a query
• proto resource monetdb prepare([resource connection,] string stmtname, string query)

Prepare a query for future execution
• proto resource monetdb execute([resource connection,] string stmtname, array params)

Execute a prepared query
• proto int monetdb num rows(resource result) Return the number of rows in the result
• proto int monetdb num fields(resource result) Return the number of fields in the result
• proto int monetdb affected rows(resource result) Returns the number of affected tuples
• proto string pg last notice(resource connection) Returns the last notice set by the

back-end
• proto string monetdb field name(resource result, int field number) Returns the name

of the field
• proto string monetdb field table(resource result, int field number) Returns the name

of the table field belongs to
• proto string monetdb field type(resource result, int field number) Returns the type of

the field
• proto int monetdb field num(resource result, string field name) Returns the field num-

ber of the named field
• proto mixed monetdb fetch result(resource result, [int row number,] mixed field name)

Returns values from a result identifier
• proto array monetdb fetch row(resource result [, int row [, int result type]]) Get a row

as an enumerated array
• proto array monetdb fetch assoc(resource result [, int row]) Fetch a row as an assoc

array
• proto array monetdb fetch array(resource result [, int row [, int result type]]) Fetch a

row as an array
• proto object monetdb fetch object(resource result [, int row [, string class name [,

NULL|array ctor params]]]) Fetch a row as an object
• proto bool monetdb result seek(resource result, int offset) Set internal row offset

Chapter 9: Application Programming Interfaces 230

• proto int monetdb field prtlen(resource result, [int row,] mixed field name or number)
Returns the printed length

• proto int monetdb field is null(resource result, [int row,] mixed field name or number)
Test if a field is NULL

• proto bool monetdb free result(resource result) Free result memory
• proto string monetdb escape string(string data) Escape string for text/char type
• proto int monetdb connection status(resource connnection) Get connection status
• proto bool monetdb connection reset(resource connection) Reset connection (recon-

nect)
• proto bool monetdb put line([resource connection,] string query) Send null-terminated

string to back-end server
• proto bool monetdb end copy([resource connection]) Sync with back-end. Completes

the Copy command
• proto array monetdb copy to(resource connection, string table name [, string delimiter

[, string null as]]) Copy table to array
• proto bool monetdb copy from(resource connection, string table name , array rows [,

string delimiter [, string null as]]) Copy table from array
• proto bool monetdb connection busy(resource connection) Get connection is busy or

not
• proto bool monetdb send query(resource connection, string query) Send asynchronous

query
• proto bool monetdb send query params(resource connection, string query) Send asyn-

chronous parameterized query
• proto bool monetdb send prepare(resource connection, string stmtname, string query)

Asynchronously prepare a query for future execution
• proto bool monetdb send execute(resource connection, string stmtname, array params)

Executes prevriously prepared stmtname asynchronously
• proto resource monetdb get result(resource connection) Get asynchronous query result
• proto mixed monetdb result status(resource result[, long result type]) Get status of

query result
• proto array monetdb meta data(resource db, string table) Get meta data
• proto array monetdb convert(resource db, string table, array values[, int options])

Check and convert values for MonetDB SQL statement
• proto mixed monetdb insert(resource db, string table, array values[, int options]) Insert

values (filed=>value) to table
• proto mixed monetdb update(resource db, string table, array fields, array ids[, int

options]) Update table using values (field=>value) and ids (id=>value)
• proto mixed monetdb delete(resource db, string table, array ids[, int options]) Delete

records has ids (id=>value)
• proto mixed monetdb select(resource db, string table, array ids[, int options]) Select

records that has ids (id=>value)

Chapter 9: Application Programming Interfaces 231

9.4 The MonetDB MAPI and SQL client python API

9.5 Introduction

This is the new native python client API. This API is cross-platform, and doesn’t depend
on any monetdb libraries. It has support for python 2.5, 2.6 and 3.0 and is Python DBAPI
2.0 compatible.

9.6 Changes

A number of things are different compared to the old version that uses the mapi library:
• No dependecies on MonetDB libraries anymore
• MAPI protocol is now implemented in pure python
• Added unit tests for the SQL API
• The MAPI module is now named monetdb.mapi
• The SQL module is now named monetdb.sql
• Small changes in argument names for functions
• Type conversion is working (for example a monetdb int becomes a python int)
• If you want to use the mapi module with python3.* you should use the mapi3.py module

(import monetdb.mapi3 as mapi). This is done automatically for the sql module
• Dropped support for the dictionary based cursor

9.7 Installation

To install the MonetDB python API run the following command from the python source
directory:
python setup.py install

That’s all, now you are ready to start using the API.

9.8 Documentation

The python code is well documented, so if you need to find documentation you should have
a look at the source code. Below is an interactive example on how to use the monetdb SQL
API which should get you started quite fast.

9.9 Examples

There are some examples in the ’examples’ folder, but here are is a line by line example of
the SQL API:
> # import the SQL module
> import monetdb.sql
>
> # set up a connection. arguments below are the defaults
> connection = monetdb.sql.connect(username="monetdb", password="monetdb", hostname="localhost", database="demo")
>
> # create a cursor

Chapter 9: Application Programming Interfaces 232

> cursor = connection.cursor()
>
> # increase the rows fetched to increase performance (optional)
> cursor.arraysize = 100
>
> # execute a query (return the number of rows to fetch)
> cursor.execute(’SELECT * FROM tables’)
26
>
> # fetch only one row
> cursor.fetchone()
[1062, ’schemas’, 1061, None, 0, True, 0, 0]
>
> # fetch the remaining rows
> cursor.fetchall()
[[1067, ’types’, 1061, None, 0, True, 0, 0],
[1076, ’functions’, 1061, None, 0, True, 0, 0],
[1085, ’args’, 1061, None, 0, True, 0, 0],
[1093, ’sequences’, 1061, None, 0, True, 0, 0],
[1103, ’dependencies’, 1061, None, 0, True, 0, 0],
[1107, ’connections’, 1061, None, 0, True, 0, 0],
[1116, ’_tables’, 1061, None, 0, True, 0, 0],
...
[4141, ’user_role’, 1061, None, 0, True, 0, 0],
[4144, ’auths’, 1061, None, 0, True, 0, 0],
[4148, ’privileges’, 1061, None, 0, True, 0, 0]]
>
> # Show the table meta data
> cursor.description
[(’id’, ’int’, 4, 4, None, None, None),
(’name’, ’varchar’, 12, 12, None, None, None),
(’schema_id’, ’int’, 4, 4, None, None, None),
(’query’, ’varchar’, 168, 168, None, None, None),
(’type’, ’smallint’, 1, 1, None, None, None),
(’system’, ’boolean’, 5, 5, None, None, None),
(’commit_action’, ’smallint’, 1, 1, None, None, None),
(’temporary’, ’tinyint’, 1, 1, None, None, None)]

If you would like to communicate with the database at a lower level you can use the
MAPI library:

> # If you use python 2.6, python 3.0 or higher:
> from monetdb import mapi
>
> # If you use python2.5
> from monetdb import mapi25 as mapi
>
> server = mapi.Server()

Chapter 9: Application Programming Interfaces 233

> server.connect(hostname="localhost", port=50000, username="monetdb", password="monetdb", database="demo", language="sql")
> server.cmd("sSELECT * FROM tables;")
...

9.10 MonetDB JDBC Driver

The most obvious way to connect to a data source using the Java programming language is
by making use of the in Java defined JDBC framework. MonetDB has a native Java JDBC
driver type 4 which allows use of the MonetDB database in a Java alike way.

It is quite difficult to have a fully complete JDBC implementation. Also this driver isn’t
complete in that sense. However, it is believed that the most prominent parts of the JDBC
interface are implemented, and in such a way that they adhere to the specifications. If you
make extensive use of JDBC semantics and rely on many of its features, please read the
release notes which are to be found in the src/jdbc directory of the sql CVS tree.

This document gives a short description how to use the MonetDB JDBC driver in Java
applications. A familiarity with the Java JDBC API is required to fully understand this
document. Please note that you can find the complete JDBC API on Sun’s web site
http://java.sun.com/.

In order to use the MonetDB JDBC driver in Java applications you need (of course) a
running MonetDB/SQL instance, preferably via merovingian.

9.10.1 Getting the driver Jar

The easiest way to acquire the driver is to download it from our download page. You will
find a file called called monetdb-X.Y-jdbc.jar where X and Y are major and minor
version numbers. The current release as of this writing is 1.11.

9.10.2 Compiling the driver (using ant, optional)

If you prefer to build the driver yourself, make sure you acquire the MonetDB Java repos-
itory, e.g. as part of the Super Source Tarball. The Java sources are built using Apache’s
Ant tool. Simply issuing the command ant distjdbc should be sufficient to build the
driver jar-archive in the subdirectory jars. See the ant web site for more documentation
on the ant build-tool: http://ant.apache.org/. The Java sources require at least a
Java 2 platform 1.4 compatible compiler. The JDBC driver, however, currently cannot be
compiled with a Java 1.6 or up compiler.

9.10.3 Testing the driver using the JdbcClient utility

Before you start developing your programs which use the MonetDB JDBC driver it is
generally a good idea to check if the driver actually works in your environment. JdbcClient
is a no longer distributed, but when compling from sources, it is still built and put in the
jars directory. Follow the steps below to assure your setup is complete:
1. start merovingian
2. create a database using monetdb create mytest

3. run the JdbcClient utility using java -jar {path/to/jdbcclient.jar} -dmytest
-umonetdb (with password monetdb)

The last step should give you something like this:

Chapter 9: Application Programming Interfaces 234

% java -jar jars/jdbcclient.jar -umonetdb
password:

Welcome to the MonetDB interactive JDBC terminal!
Database: MonetDB 5.0.0
Driver: MonetDB Native Driver 1.5 (Steadfast_pre4 20061124)
Type \q to quit, \h for a list of available commands
auto commit mode: on
monetdb->

From here you can execute a simple query to assure yourself everything is setup to
work correctly. If the connection fails, observe the error messages from JdbcClient and the
merovingian logs for clues.

9.10.4 Using the driver in your Java programs

To use the MonetDB JDBC driver, the monetdb-X.Y-jdbc.jar jar-archive has to be in
the Java classpath. Make sure this is actually the case.

Loading the driver in your Java program requires two lines of code:

// make sure the ClassLoader has the MonetDB JDBC driver loaded
Class.forName("nl.cwi.monetdb.jdbc.MonetDriver");
// request a Connection to a MonetDB server running on ’localhost’
Connection con = DriverManager.getConnection("jdbc:monetdb://localhost/database", "monetdb", "monetdb");

The first line makes sure the Java ClassLoader has initialised (and loaded) the Driver
class of the MonetDB JDBC package, so it is registered with the DriverManager. The second
line requests a Connection object from the DriverManager which is suitable for MonetDB.

The string passed to the "getConnection()"method is defined as
"jdbc:monetdb://<host>[:<port>]/<database>" where elements between "<"
and ">" are required and elements between "[" and "]" are optional.

9.10.5 A sample Java program

import java.sql.*;

/**
* This example assumes there exist tables a and b filled with some data.
* On these tables some queries are executed and the JDBC driver is tested
* on it’s accuracy and robustness against ’users’.
*
* @author Fabian Groffen
*/
public class MJDBCTest {

public static void main(String[] args) throws Exception {
// make sure the driver is loaded
Class.forName("nl.cwi.monetdb.jdbc.MonetDriver");
Connection con = DriverManager.getConnection("jdbc:monetdb://localhost/database", "monetdb", "monetdb");
Statement st = con.createStatement();
ResultSet rs;

Chapter 9: Application Programming Interfaces 235

rs = st.executeQuery("SELECT a.var1, COUNT(b.id) as total FROM a, b WHERE a.var1 = b.id AND a.var1 = ’andb’ GROUP BY a.var1 ORDER BY a.var1, total;");
// get meta data and print columns with their type
ResultSetMetaData md = rs.getMetaData();
for (int i = 1; i <= md.getColumnCount(); i++) {

System.out.print(md.getColumnName(i) + ":" +
md.getColumnTypeName(i) + "\t");

}
System.out.println("");
// print the data: only the first 5 rows, while there probably are
// a lot more. This shouldn’t cause any problems afterwards since the
// result should get properly discarded on the next query
for (int i = 0; rs.next() && i < 5; i++) {

for (int j = 1; j <= md.getColumnCount(); j++) {
System.out.print(rs.getString(j) + "\t");

}
System.out.println("");

}

// tell the driver to only return 5 rows, it can optimize on this
// value, and will not fetch any more than 5 rows.
st.setMaxRows(5);
// we ask the database for 22 rows, while we set the JDBC driver to
// 5 rows, this shouldn’t be a problem at all...
rs = st.executeQuery("select * from a limit 22");
// read till the driver says there are no rows left
for (int i = 0; rs.next(); i++) {

System.out.print("[" + rs.getString("var1") + "]");
System.out.print("[" + rs.getString("var2") + "]");
System.out.print("[" + rs.getInt("var3") + "]");
System.out.println("[" + rs.getString("var4") + "]");

}

// this close is not needed, should be done by next execute(Query) call
// however if there can be some time between this point and the next
// execute call, it is from a resource perspective better to close it.
//rs.close();

// unset the row limit; 0 means as much as the database sends us
st.setMaxRows(0);
// we only ask 10 rows
rs = st.executeQuery("select * from b limit 10;");
// and simply print them
while (rs.next()) {

System.out.print(rs.getInt("rowid") + ", ");
System.out.print(rs.getString("id") + ", ");
System.out.print(rs.getInt("var1") + ", ");

Chapter 9: Application Programming Interfaces 236

System.out.print(rs.getInt("var2") + ", ");
System.out.print(rs.getString("var3") + ", ");
System.out.println(rs.getString("var4"));

}

// this close is not needed, as the Statement will close the last
// ResultSet around when it’s closed
// again, if that can take some time, it’s nicer to close immediately
// the reason why these closes are commented out here, is to test if
// the driver really cleans up it’s mess like it should
//rs.close();

// perform a ResultSet-less query (with no trailing ; since that should
// be possible as well and is JDBC standard)
// Note that this method should return the number of updated rows. This
// method however always returns -1, since Monet currently doesn’t
// support returning the affected rows.
st.executeUpdate("delete from a where var1 = ’zzzz’");

// closing the connection should take care of closing all generated
// statements from it...
// don’t forget to do it yourself if the connection is reused or much
// longer alive, since the Statement object contains a lot of things
// you probably want to reclaim if you don’t need them anymore.
//st.close();
con.close();

}
}

9.11 MonetDB ODBC Driver

Short for Open DataBase Connectivity, a standard database access method developed by
the SQL Access group in 1992. The goal of ODBC is to make it possible to access any
data from any application, regardless of which database management system (DBMS) is
handling the data. ODBC manages this by inserting a middle layer, called a database
driver, between an application and the DBMS. The purpose of this layer is to translate the
application’s data queries into commands that the DBMS understands. For this to work,
both the application and the DBMS must be ODBC-compliant – that is, the application
must be capable of issuing ODBC commands and the DBMS must be capable of responding
to them.

The ODBC driver for MonetDB is included in the Windows installer and Linux RPMs.
The source can be found in the SQL CVS tree.

To help you setup your system to use the ODBC driver with MonetDB, two how-tos are
available, one for Windows users and one for Linux/UNIX users.

Chapter 9: Application Programming Interfaces 237

Microsoft Excel demo

A little demo showing how to import data from a MonetDB server into Microsoft Excel.

Using Excel with the MonetDB ODBC Driver

Start up the MonetDB SQL Server and Excel.

In Excel, select from the drop down menu, first Data, then Get External Data, and finally
New Database Query...

If MonetDB was installed correctly, there should be an entry MonetDB in the dialog
box that opens. Select it and click on OK.

Chapter 9: Application Programming Interfaces 238

In the wizard that opens, scroll down in the list on the left hand side and select voyages.
Then click on the button labeled > and then on Next >.

Chapter 9: Application Programming Interfaces 239

In the next page of the wizard, click on Next >.

Chapter 9: Application Programming Interfaces 240

In the next page of the wizard, click on Next >.

Chapter 9: Application Programming Interfaces 241

In the final page of the wizard, click on Finish.

A new dialog window opens. Click on OK to insert the data into the current Excel
worksheet.

Chapter 9: Application Programming Interfaces 242

That’s all.

Installing the MonetDB ODBC Driver for unixODBC

Configuring the MonetDB Driver

Chapter 9: Application Programming Interfaces 243

As Superuser, start the unixODBC configuration program ODBCConfig and select the
Drivers tab.

Chapter 9: Application Programming Interfaces 244

On this tab, click on the button labeled Add... and fill in the fields as follows.

Name MonetDB

Description
ODBC Driver for MonetDB SQL Server

Chapter 9: Application Programming Interfaces 245

Driver <path-to-MonetDB>/lib(64)/libMonetODBC.so

Setup <path-to-MonetDB>/lib(64)/libMonetODBCs.so

Don’t change the other fields. When done, click on the check mark in the top left corner
of the window. The first window should now contain an entry for MonetDB. Click on OK

<h3>Configuring a Data Source</h3>

Now as normal user start ODBCConfig again.

Chapter 9: Application Programming Interfaces 246

On the User DSN tab click on the Add... button. A new window pops up in which you
have to select the ODBC driver. Click on the entry for MonetDB and click on OK.

Chapter 9: Application Programming Interfaces 247

A new window pops up. Fill in the fields as follows.

Name MonetDB

Description
Default MonetDB Data Source

Chapter 9: Application Programming Interfaces 248

Host localhost

Port 50000

User monetdb

Password monetdb

Don’t change the other fields. When done, click on the check mark in the top left corner
of the window. The first window should now contain an entry for MonetDB. Click on OK

Appendix A: Instruction Summary 249

Appendix A Instruction Summary

The table below gives a condensed overview of the operations defined in each of the modules.
aggr.avg aggr.count no nil aggr.min aggr.size
aggr.cardinality aggr.histogram aggr.prod aggr.sum
aggr.count aggr.max aggr.product
alarm.alarm alarm.epoch alarm.time
alarm.ctime alarm.prelude alarm.timers
alarm.epilogue alarm.sleep alarm.usec
algebra.antijoin algebra.joinPath algebra.project algebra.sortTH
algebra.antiuselect algebra.kdifference algebra.rangesplit algebra.sortTail
algebra.bandjoin algebra.kintersect algebra.reuse algebra.split
algebra.copy algebra.kunion algebra.revert algebra.ssort
algebra.crossproduct algebra.kunique algebra.sample algebra.ssort rev
algebra.difference algebra.leftfetchjoin algebra.sunion
algebra.exist algebra.leftjoin algebra.sdifference algebra.sunique
algebra.fetch algebra.like algebra.select algebra.thetajoin
algebra.fetchjoin algebra.markH algebra.selectH algebra.thetaselect
algebra.find algebra.markT algebra.selectNotNil algebra.thetauselect
algebra.fragment algebra.mark grp algebra.semijoin algebra.topN
algebra.groupby algebra.materialize algebra.sintersect algebra.tunique
algebra.hashjoin algebra.merge algebra.slice algebra.uhashsplit
algebra.hashsplit algebra.mergejoin algebra.sort algebra.union
algebra.indexjoin algebra.number algebra.sortHT algebra.unique
algebra.intersect algebra.outerjoin algebra.sortReverse algebra.urangesplit
algebra.join algebra.position algebra.sortReverseTail
array.grid array.product array.project
bat.append bat.getSpaceUsed bat.isaSet bat.setColumn
bat.attach bat.getStorageSize bat.load bat.setGarbage
bat.delete bat.getTail bat.mirror bat.setHash
bat.densebat bat.getTailType bat.new bat.setHot
bat.flush bat.hasAppendMode bat.newIterator bat.setKey
bat.getAccess bat.hasMoreElementsbat.order bat.setMemoryAdvise
bat.getAlpha bat.hasReadMode bat.orderReverse bat.setMemoryMap
bat.getCapacity bat.hasWriteMode bat.pack bat.setName
bat.getDelta bat.info bat.partition bat.setPersistent
bat.getDiskSize bat.inplace bat.reduce bat.setReadMode
bat.getHead bat.insert bat.replace bat.setRole
bat.getHeadType bat.isCached bat.reverse bat.setSet
bat.getHeat bat.isPersistent bat.revert bat.setSorted
bat.getMemorySize bat.isSorted bat.save bat.setTransient
bat.getName bat.isSortedReverse bat.setAccess bat.setWriteMode
bat.getRole bat.isSynced bat.setAppendMode bat.unload
bat.getSequenceBase bat.isTransient bat.setBase bat.unpack
bat.getSize bat.isaKey bat.setCold
batcalc.!= batcalc.< batcalc.bte batcalc.lng
batcalc.% batcalc.<= batcalc.chr batcalc.not

Appendix A: Instruction Summary 250

batcalc.* batcalc.== batcalc.dbl batcalc.oid
batcalc.+ batcalc.> batcalc.flt batcalc.or
batcalc.++ batcalc.>= batcalc.ifthen batcalc.sht
batcalc.- batcalc.abs batcalc.ifthenelse batcalc.str
batcalc.– batcalc.and batcalc.int batcalc.wrd
batcalc./ batcalc.bit batcalc.isnil batcalc.xor
batcolor.blue batcolor.green batcolor.red batcolor.value
batcolor.cb batcolor.hsv batcolor.rgb
batcolor.color batcolor.hue batcolor.saturation
batcolor.cr batcolor.luminance batcolor.str
batmmath.acos batmmath.cos batmmath.fmod batmmath.sinh
batmmath.asin batmmath.cosh batmmath.log batmmath.sqrt
batmmath.atan batmmath.exp batmmath.log10 batmmath.tan
batmmath.atan2 batmmath.fabs batmmath.pow batmmath.tanh
batmmath.ceil batmmath.floor batmmath.sin
batmtime.day batmtime.milliseconds batmtime.year
batmtime.hours batmtime.month batmtime.seconds
batstr.chrAt batstr.ltrim batstr.search batstr.toLower
batstr.endsWith batstr.nbytes batstr.startsWith batstr.toUpper
batstr.length batstr.r search batstr.string batstr.trim
batstr.like batstr.replace batstr.substitute batstr.unicodeAt
batstr.like uselect batstr.rtrim batstr.substring
bbp.bind bbp.getDiskSpace bbp.getObjects bbp.prelude
bbp.close bbp.getHeadType bbp.getPageSize bbp.release
bbp.commit bbp.getHeat bbp.getRNames bbp.releaseAll
bbp.deposit bbp.getKind bbp.getRefCount bbp.take
bbp.destroy bbp.getLRefCount bbp.getStatus bbp.toString
bbp.discard bbp.getLocation bbp.getTailType
bbp.getCount bbp.getName bbp.iterator
bbp.getDirty bbp.getNames bbp.open
blob.blob blob.prelude blob.tostring
blob.nitems blob.toblob
box.close box.discard box.open box.take
box.deposit box.getBoxNames box.release box.toString
box.destroy box.iterator box.releaseAll
bpm.adapt bpm.fold bpm.mapNxt bpm.prelude
bpm.addPartition bpm.garbage bpm.mapPrv bpm.rangePartition
bpm.close bpm.getDimension bpm.mapThghDbl bpm.rangePartitionSort
bpm.count bpm.getNames bpm.mapThghLng bpm.replace
bpm.delete bpm.getNumberOfPartitions bpm.saveCatalog
bpm.deposit bpm.hasMoreElementsbpm.mapTlowDbl bpm.select
bpm.derivePartition bpm.hashPartition bpm.mapTlowLng bpm.sortPartitions
bpm.destroy bpm.hashPartitions bpm.new bpm.sortTail
bpm.discard bpm.insert bpm.newIterator bpm.splitquant
bpm.dump bpm.mapAlias bpm.open bpm.take
bpm.emptySet bpm.mapBid bpm.partition bpm.unfold
bpm.epilogue bpm.mapName bpm.pieces

Appendix A: Instruction Summary 251

bstream.create bstream.destroy bstream.read
calc.!= calc.abs calc.ifthenelse calc.not
calc.% calc.and calc.inet calc.oid
calc.* calc.bat calc.int calc.or
calc.+ calc.between calc.inv calc.ptr
calc.- calc.bit calc.isnil calc.setoid
calc./ calc.blob calc.isnotnil calc.sht
calc.< calc.bte calc.length calc.sign
calc.<< calc.chr calc.lng calc.sizeof
calc.<= calc.date calc.max calc.sqladd
calc.= calc.daytime calc.max no nil calc.sqlblob
calc.== calc.dbl calc.min calc.str
calc.> calc.flt calc.min no nil calc.timestamp
calc.>= calc.getBAT calc.newoid calc.void
calc.>> calc.getBATidentifier calc.wrd
clients.addScenario clients.getId clients.getScenario clients.removeUser
clients.addUser clients.getInfo clients.getTime clients.setHistory
clients.changePassword clients.getUsername clients.setListing
clients.changeUsername clients.getUsers clients.setPassword
clients.checkPermission clients.quit clients.setScenario
clients.exit clients.getLastCommand clients.shutdown
clients.getActions clients.getLogins clients.removeScenario
cluster.column cluster.map cluster.table
cluster.key cluster.new
color.blue color.green color.red color.value
color.cb color.hsv color.rgb color.ycc
color.color color.hue color.saturation
color.cr color.luminance color.str
const.close const.epiloque const.prelude const.take
const.deposit const.hasMoreElements const.toString
const.destroy const.newIterator const.release
const.discard const.open const.releaseAll
constraints.emptySet
crackers.DeleteMap crackers.dselect crackers.getCrackerBAT
crackers.InsertAVLIndex crackers.getMap crackers.materializeHead
crackers.activeCacheConsciousCrackHashJoin crackers.getTotalStorage
crackers.alignJoin crackers.extendCrackerBAT crackers.pmaddReference
crackers.alignedJoin crackers.extendCrackerMap crackers.pmclearReferences
crackers.bandJoin crackers.fmaddReference crackers.pmjoinselect
crackers.buildAVLIndex crackers.hselect crackers.pmmaxTail
crackers.cacheConsciousCrackHashJoin crackers.insert crackers.pmproject
crackers.cacheConsciousCrackHashJoinAlignOnlycrackers.insertionsBForce
crackers.crackHashJoin crackers.insertionsBOnNeed
crackers.crackJoin crackers.fmclearReferences crackers.pmselect
crackers.crackOrdered crackers.insertionsBOnNeedGradually
crackers.crackOrdered validate crackers.insertionsBOnNeedGraduallyRipple
crackers.crackUnordered validate crackers.insertionsForget

Appendix A: Instruction Summary 252

crackers.deleteAVL crackers.fmcreateMapcrackers.insertionsPartiallyForget
crackers.deletionsOnNeed crackers.joinselect crackers.pmtselect
crackers.deletionsOnNeedGradually crackers.joinuselect crackers.positionproject
crackers.deletionsOnNeedGraduallyRipple crackers.mapCount crackers.printAVLTree int
crackers.djoinselect crackers.fmremoveMapcrackers.markedproject
crackers.dproject crackers.fullAlignment crackers.printCrackerBAT
date.!= date.<= date.> date.date
date.< date.== date.>= date.isnil
daytime.!= daytime.<= daytime.> daytime.isnil
daytime.< daytime.== daytime.>=
factories.getArrival factories.getDeparture factories.shutdown
factories.getCaller factories.getOwners factories.getPlants
group.avg group.max group.prelude group.size
group.count group.min group.refine group.sum
group.derive group.new group.refine reverse group.variance
identifier.identifier identifier.prelude
inet.!= inet.> inet.host inet.new
inet.< inet.>= inet.hostmask inet.setmasklen
inet.<< inet.>> inet.isnil inet.text
inet.<<= inet.>>= inet.masklen
inet.<= inet.abbrev inet.netmask
inet.= inet.broadcast inet.network
inspect.equalType inspect.getComment inspect.getSignature inspect.getStatistics
inspect.getAddress inspect.getDefinition inspect.getType
inspect.getAddresses inspect.getEnvironment inspect.getTypeIndex
inspect.getAtomNames inspect.getFunction inspect.getSignatures
inspect.getAtomSizes inspect.getKind inspect.getSize inspect.getTypeName
inspect.getAtomSuper inspect.getModule inspect.getSource inspect.getWelcome
io.data io.import io.prompt io.stdout
io.export io.print io.stderr io.table
io.ftable io.printf io.stdin
language.assert language.newRange language.setIOTrace language.source
language.assertSpace language.nextElementlanguage.setMemoryTrace
language.call language.raise language.setThreadTrace
language.dataflow language.register language.setTimerTrace
lock.create lock.set lock.try
lock.destroy lock.tostr lock.unset
mal.multiplex
manual.completion manual.help manual.search manual.summary
manual.createXML manual.index manual.section
mapi.bind mapi.fetch field array mapi.query array
mapi.connect mapi.fetch line mapi.listen ssl mapi.query handle
mapi.connect ssl mapi.fetch reset mapi.lookup mapi.reconnect
mapi.destroy mapi.fetch row mapi.malclient mapi.resume
mapi.disconnect mapi.finish mapi.next result mapi.rpc
mapi.error mapi.getError mapi.ping mapi.setAlias
mapi.explain mapi.get field count mapi.prepare mapi.stop

Appendix A: Instruction Summary 253

mapi.fetch all rows mapi.get row count mapi.put mapi.suspend
mapi.fetch field mapi.listen mapi.query mapi.trace
mat.hasMoreElements mat.new mat.pack
mat.info mat.newIterator mat.print
mdb.List mdb.getReason mdb.listMapi mdb.setMemoryTrace
mdb.collect mdb.getStackDepth mdb.modules mdb.setThread
mdb.dot mdb.getStackFrame mdb.setCatch mdb.setTimer
mdb.dump mdb.getStackTrace mdb.setCount mdb.setTrace
mdb.getContext mdb.grab mdb.setDebug mdb.start
mdb.getDebug mdb.inspect mdb.setFlow mdb.stop
mdb.getDefinition mdb.lifespan mdb.setIO mdb.var
mdb.getException mdb.list mdb.setMemory
mkey.bulk rotate xor hash mkey.hash mkey.rotate
mmath.acos mmath.cot mmath.isnan mmath.sin
mmath.asin mmath.exp mmath.log mmath.sinh
mmath.atan mmath.fabs mmath.log10 mmath.sqrt
mmath.atan2 mmath.finite mmath.pi mmath.srand
mmath.ceil mmath.floor mmath.pow mmath.tan
mmath.cos mmath.fmod mmath.rand mmath.tanh
mmath.cosh mmath.isinf mmath.round
mtime.add mtime.dayname mtime.local timezonemtime.start dst
mtime.adddays mtime.daynum mtime.milliseconds mtime.str to date
mtime.addmonths mtime.dayofweek mtime.minutes mtime.time add sec interval
mtime.addyears mtime.dayofyear mtime.month mtime.time sub sec interval
mtime.compute mtime.daytime mtime.monthname mtime.time synonyms
mtime.current date mtime.diff mtime.monthnum mtime.timestamp
mtime.current time mtime.dst mtime.msec mtime.timestamp add month interval
mtime.current timestamp mtime.msecs mtime.timestamp add sec interval
mtime.date mtime.end dst mtime.olddate mtime.timestamp sub month interval
mtime.date add month interval mtime.oldduration mtime.timestamp sub sec interval
mtime.date add sec interval mtime.prelude mtime.timezone
mtime.date sub sec interval mtime.rule mtime.timezone local
mtime.date to str mtime.epilogue mtime.seconds mtime.weekday
mtime.day mtime.hours mtime.setTimezone mtime.weekofyear
optimizer.accessmode optimizer.dumpQEP optimizer.joinselect optimizer.prelude
optimizer.accumulators optimizer.macro optimizer.pushranges
optimizer.aliases optimizer.emptySet optimizer.mergetable optimizer.recycle
optimizer.clrDebug optimizer.evaluate optimizer.mitosis optimizer.reduce
optimizer.coercions optimizer.factorize optimizer.multiplex optimizer.remap
optimizer.commonTerms optimizer.octopus optimizer.remoteQueries
optimizer.constants optimizer.garbageCollector optimizer.replicator
optimizer.costModel optimizer.heuristics optimizer.optimize optimizer.setDebug
optimizer.crack optimizer.history optimizer.orcam optimizer.showFlowGraph
optimizer.dataflow optimizer.inline optimizer.partitions optimizer.showPlan
optimizer.deadcode optimizer.joinPath optimizer.peephole optimizer.singleton
pcre.compile pcre.match pcre.prelude pcre.sql2pcre
pcre.index pcre.patindex pcre.replace pcre.uselect

Appendix A: Instruction Summary 254

pcre.like uselect pcre.pcre quote pcre.select
pqueue.dequeue max pqueue.enqueue min pqueue.topn min
pqueue.dequeue min pqueue.init pqueue.topreplace max
pqueue.enqueue max pqueue.topn max pqueue.topreplace min
profiler.activate profiler.getDiskReads profiler.noop
profiler.cleanup profiler.getDiskWrites profiler.openStream
profiler.closeStream profiler.getEvent profiler.getTrace profiler.reset
profiler.clrFilter profiler.getFootprint profiler.setAll
profiler.deactivate profiler.getMemory profiler.getUserTime profiler.setEndPoint
profiler.dumpTrace profiler.getSystemTime profiler.setFilter
recycle.dump recycle.getRetainPolicy recycle.reset
recycle.dumpQPat recycle.getReusePolicy recycle.setCachePolicy
recycle.epilogue recycle.log recycle.monitor recycle.setRetainPolicy
recycle.getCachePolicy recycle.prelude recycle.setReusePolicy
remote.connect remote.disconnect remote.get remote.put
remote.create remote.epilogue remote.getList remote.register
remote.destroy remote.exec remote.prelude
replicator.bind replicator.bind dbat replicator.setMaster replicator.setVersion
sabaoth.epilogue sabaoth.getLocalConnectionPort sabaoth.marchScenario
sabaoth.getLocalConnectionHost sabaoth.marchConnection
scheduler.choice scheduler.drop scheduler.isolation scheduler.pick
scheduler.costPrediction scheduler.octopus scheduler.volumeCost
sema.create sema.destroy sema.down sema.up
sql.forgetPrevious sql.keepquery sql.queryId
sqlblob.sqlblob
statistics.close statistics.forceUpdate statistics.open
statistics.deposit statistics.getCount statistics.getObjects
statistics.destroy statistics.getHistogram statistics.prelude
statistics.discard statistics.getHotset statistics.getSize statistics.release
statistics.dump statistics.getMax statistics.hasMoreElements
statistics.epilogue statistics.getMin statistics.newIterator
status.batStatistics status.getThreads status.mem cursize status.vm maxsize
status.cpuStatistics status.ioStatistics status.mem maxsize
status.getDatabases status.memStatistics status.vmStatistics
status.getPorts status.memUsage status.vm cursize
str.+ str.length str.rtrim str.substitute
str.STRepilogue str.like str.search str.substring
str.STRprelude str.locate str.space str.suffix
str.ascii str.ltrim str.startsWith str.toLower
str.chrAt str.nbytes str.str str.toUpper
str.codeset str.prefix str.string str.trim
str.endsWith str.r search str.stringleft str.unicode
str.iconv str.repeat str.stringlength str.unicodeAt
str.insert str.replace str.stringright
streams.blocked streams.openReadBytes streams.socketReadBytes
streams.close streams.openWrite streams.readStr streams.socketWrite
streams.flush streams.openWriteBytes streams.socketWriteBytes

Appendix A: Instruction Summary 255

streams.openRead streams.readInt streams.socketRead streams.writeInt
tablet.display tablet.lastPage tablet.setComplaints tablet.setProperties
tablet.dump tablet.load tablet.setDecimal tablet.setRowBracket
tablet.finish tablet.nextPage tablet.setDelimiter tablet.setStream
tablet.firstPage tablet.output tablet.setFormat tablet.setTableBracket
tablet.getPage tablet.page tablet.setName tablet.setTryAll
tablet.getPageCnt tablet.prevPage tablet.setNull tablet.setWidth
tablet.header tablet.setBracket tablet.setPivot
tablet.input tablet.setColumn tablet.setPosition
timestamp.!= timestamp.== timestamp.epoch
timestamp.< timestamp.> timestamp.isnil
timestamp.<= timestamp.>= timestamp.unix epoch
timezone.str timezone.timestamp
transaction.abort transaction.clean transaction.delta transaction.subcommit
transaction.alpha transaction.commit transaction.prev transaction.sync
txtsim.editdistance txtsim.qgramnormalize txtsim.stringdiff
txtsim.editdistance2 txtsim.qgramselfjoin txtsim.soundex
txtsim.levenshtein txtsim.similarity txtsim.str2qgrams
unix.getenv unix.setenv
url.getAnchor url.getDomain url.getProtocol url.isaURL
url.getBasename url.getExtension url.getQuery url.new
url.getContent url.getFile url.getQueryArg url.url
url.getContext url.getHost url.getRobotURL
url.getDirectory url.getPort url.getUser
user.main
zrule.define

Appendix B: Instruction Help 256

Appendix B Instruction Help

The table below summarizes the commentary lines encountered in the system associated
with a MAL kernel modules.

aggr.avg Grouped tail average on dbl
aggr.cardinality Return the cardinality of the BAT tail values.
aggr.count Grouped count
aggr.count no nil Return the number of elements currently in a BAT ignoring BUNs with

nil-tail
aggr.histogram Produce a BAT containing the histogram over the tail values.
aggr.max Give the highest tail value.
aggr.min Give the lowest tail value.
aggr.prod Gives the product of all tail values.
aggr.product Product over grouped tail on dbl
aggr.size Grouped count of true values
aggr.sum Grouped tail sum on dbl
alarm.alarm execute action in X secs
alarm.ctime current time as a string
alarm.epilogue Finalize alarm module
alarm.epoch current time as unix epoch
alarm.prelude Initialize alarm module
alarm.sleep sleep X secs
alarm.time time in millisecs
alarm.timers give a list of all active timers
alarm.usec return cpu microseconds info
algebra.antijoin Returns the antijoin
algebra.antiuselect See select() but limited to head values
algebra.bandjoin This is a join() for which the predicate is that two BUNs match if

the left-tail value is within the range [right-head - minus, right-head +
plus], depending on (l in/h in), the bounds are included. Works only
for the builtin numerical types, and their derivates.

algebra.copy Returns physical copy of a BAT.
algebra.crossproductReturns the cross product
algebra.difference
algebra.exist Returns true when ’h,t’ occurs as a bun in b.
algebra.fetch Returns a positional selection of b by the oid head values of s
algebra.fetchjoin Hook directly into the fetch implementation of the join.
algebra.find Returns the tail value ’t’ for which some [h,t] BUN exists in b. If no

such BUN exists, an error occurs.
algebra.fragment Select both on head and tail range.
algebra.groupby Produces a new BAT with groups identified by the head column. The

result contains tail times the head value, ie the tail contains the result
group sizes.

algebra.hashjoin Hook directly into the hash implementation of the join.

Appendix B: Instruction Help 257

algebra.hashsplit Split a BAT on tail column according (hash-value MOD buckets). Re-
turns a recursive BAT, containing the fragments in the tail, their bucket
number in the head.

algebra.indexjoin Hook directly into the index implementation of the join.
algebra.intersect
algebra.join Returns all BUNs, consisting of a head-value from ’left’ and a tail-value

from ’right’ for which there are BUNs in ’left’ and ’right’ with equal
tail- resp. head-value (i.e. the join columns are projected out).

algebra.joinPath internal routine to handle join paths. The type analysis is rather tricky.
algebra.kdifference Returns the difference taken over only the *head* columns of

two BATs. Results in all BUNs of ’left’ that are *not* in
’right’. It does *not* do double-elimination over the ’left’ BUNs.
If you want this, use: ’kdifference(left.kunique,right.kunique)’ or:
’kdifference(left,right).kunique’.

algebra.kintersect Returns the intersection taken over only the *head* columns of
two BATs. Results in all BUNs of ’left’ that are also in
’right’. Does *not* do double- elimination over the ’left’ BUNs.
If you want this, use: ’kintersect(kunique(left),kunique(right))’ or:
’kunique(kintersect(left,right))’.

algebra.kunion Returns the union of two BATs; looking at head-columns only. Re-
sults in all BUNs of ’left’ that are not in ’right’, plus all BUNs of
’right’. *no* double-elimination is done. If you want this, do: ’ku-
nion(left.kunique,right.kunique)’ or: ’sunion(left,right).kunique’.

algebra.kunique Select unique tuples from the input BAT. Double elimination is done
only looking at the head column. The result is a BAT with property
hkeyed() == true.

algebra.leftfetchjoin
Hook directly into the left fetch join implementation.

algebra.leftjoin
algebra.like Selects all elements that have ’substr’ as in the tail.
algebra.markH Produces a new BAT with fresh unique dense sequense of OIDs in the

head that starts at base (i.e. [base,..base+b.count()-1]).
algebra.markT Produces a BAT with fresh unique OIDs in the tail starting at 0@0.
algebra.mark grp "grouped mark": Produces a new BAT with per group a locally unique

dense ascending sequense of OIDs in the tail. The tail of the first BAT
(b) identifies the group that each BUN of b belongs to. The second
BAT (g) represents the group extend, i.e., the head is the unique list
of group IDs from b’s tail. The third argument (s) gives the base value
for the new OID sequence of each group.

algebra.materialize Materialize the void column
algebra.merge Merge head and tail into a single value
algebra.mergejoin Hook directly into the merge implementation of the join.
algebra.number Produces a new BAT with identical head column, and consecutively

increasing integers (start at 0) in the tail column.

Appendix B: Instruction Help 258

algebra.outerjoin Returns all the result of a join, plus the BUNS formed NIL in the
tail and the head-values of ’outer’ whose tail-value does not match an
head-value in ’inner’.

algebra.position Returns the position of the value pair It returns an error if ’val’ does
not exist.

algebra.project Fill the tail column with a constant taken from the aligned BAT.
algebra.rangesplit Split a BAT on tail column in ’ranges’ equally sized consecutive ranges.

Returns a recursive BAT, containing the fragments in the tail, the
higher-bound of the range in the head. The higher bound of the last
range is ’nil’.

algebra.reuse Reuse a temporary BAT if you can. Otherwise, allocate enough storage
to accept result of an operation (not involving the heap)

algebra.revert Returns a BAT copy with buns in reverse order
algebra.sample Produce a random selection of size ’num’ from the input BAT.
algebra.sdifference Returns the difference taken over *both* columns of two BATs. Re-

sults in all BUNs of ’left’ that are *not* in ’right’. Does *not* do
double-elimination over the ’left’ BUNs. If you want this, use: ’sdiffer-
ence(left.sunique,right.sunique)’ or: ’sdifference(left,right).sunique’.

algebra.select Select all BUNs of a BAT with a certain tail value. Selection on NIL
is also possible (it should be properly casted, e.g.:int(nil)).

algebra.selectH
algebra.selectNotNil Select all not-nil values
algebra.semijoin Returns the intersection taken over only the *head* columns of

two BATs. Results in all BUNs of ’left’ that are also in
’right’. Does *not* do double-elimination over the ’left’ BUNs.
If you want this, use: ’kintersect(kunique(left),kunique(right))’ or:
’kunique(kintersect(left,right))’.

algebra.sintersect Returns the intersection taken over *both* columns of two BATs. Re-
sults in all BUNs of ’left’ that are also in ’right’. Does *not* do
double-elimination over the ’left’ BUNs, If you want this, use: ’sinter-
sect(sunique(left),sunique(right))’ or: ’sunique(sintersect(left,right))’.

algebra.slice Return the slice with the BUNs at position x till y.
algebra.sort Returns a BAT copy sorted on the head column.
algebra.sortHT Returns a lexicographically sorted copy on head,tail.
algebra.sortReverse Returns a BAT copy reversely sorted on the tail column.
algebra.sortReverseTail

Returns a BAT copy reversely sorted on the tail column.
algebra.sortTH Returns a lexicographically sorted copy on tail,head.
algebra.sortTail Returns a BAT copy sorted on the tail column.
algebra.split Split head into two values
algebra.ssort Returns copy of a BAT with the BUNs sorted on ascending head values.

This is a stable sort.
algebra.ssort rev Returns copy of a BAT with the BUNs sorted on descending head

values. This is a stable sort.

Appendix B: Instruction Help 259

algebra.sunion Returns the union of two BATs; looking at both columns of both
BATs. Results in all BUNs of ’left’ that are not in ’right’, plus all
BUNs of ’right’. *no* double-elimination is done. If you want this, do:
’sunion(left.sunique,right.sunique)’ or: ’sunion(left,right).sunique’.

algebra.sunique Select unique tuples from the input BAT. Double elimination is done
over BUNs as a whole (head and tail). Result is a BAT with real set()
semantics.

algebra.thetajoin Theta join on for ’mode’ in { LE, LT, EQ, GT, GE }. JOIN EQ is
just the same as join(). All other options do merge algorithms. Either
using the fact that they are ordered() already (left on tail, right on
head), or by using/creating binary search trees on the join columns.

algebra.thetaselect The theta (<=,<,=,>,>=) select()
algebra.thetauselect The theta (<=,<,=,>,>=) select() limited to head values
algebra.topN Trim all but the top N tuples.
algebra.tunique Select unique tuples from the input BAT. Double elimination is done

over the BUNs tail. The result is a BAT with property tkeyd()== true
algebra.uhashsplit Same as hashsplit, but only collect the head values in the fragments
algebra.union
algebra.unique
algebra.urangesplit Same as rangesplit, but only collect the head values in the fragments
algebra.uselect Value select, but returning only the head values. SEE

ALSO:select(bat,val)
array.grid Fills an index BAT, (grpcount,grpsize,clustersize,offset) and shift all

elemenets with a factor s
array.product Produce an array product
array.project Fill an array representation with constants
bat.append append the value u to i
bat.attach Returns a new BAT with dense head and tail of the given type and

uses the given file to initialize the tail. The file will be owned by the
server.

bat.delete Delete from the first BAT all BUNs with a corresponding BUN in the
second.

bat.densebat Creates a new [void,void] BAT of size ’size’.
bat.flush Designate a BAT as not needed anymore.
bat.getAccess return the access mode attached to this BAT as a character.
bat.getAlpha Obtain the list of BUNs added
bat.getCapacity Returns the current allocation size (in max number of elements) of a

BAT.
bat.getDelta Obtain the list of BUNs deleted
bat.getDiskSize Approximate size of the (persistent) BAT heaps as stored on disk in

pages of 512 bytes. Indices are not included, as they only live tem-
porarily in virtual memory.

bat.getHead return the BUN head value using the cursor.
bat.getHeadType Returns the type of the head column of a BAT, as an integer type

number.
bat.getHeat Return the current BBP heat (LRU stamp)

Appendix B: Instruction Help 260

bat.getMemorySize Calculate the size of the BAT heaps and indices in bytes rounded to
the memory page size (see bbp.getPageSize()).

bat.getName Gives back the logical name of a BAT.
bat.getRole Returns the rolename of the head column of a BAT.
bat.getSequenceBaseGet the sequence base for the void column of a BAT.
bat.getSize Calculate the size of the BAT descriptor, heaps and indices in bytes.
bat.getSpaceUsed Determine the total space (in bytes) occupied by a BAT.
bat.getStorageSize Determine the total space (in bytes) reserved for a BAT.
bat.getTail return the BUN tail value using the cursor.
bat.getTailType Returns the type of the tail column of a BAT, as an integer type

number.
bat.hasAppendModereturn true if to this BAT is append only.
bat.hasMoreElementsProduce the next bun for processing.
bat.hasReadMode return true if to this BAT is read only.
bat.hasWriteMode return true if to this BAT is read and write.
bat.info Produce a BAT containing info about a BAT in [attribute,value] for-

mat. It contains all properties of the BAT record. See the BAT docu-
mentation in GDK for more information.

bat.inplace inplace replace values on the given locations
bat.insert Insert one BUN[h,t] in a BAT.
bat.isCached Bat is stored in main memory.
bat.isPersistent
bat.isSorted Returns whether a BAT is ordered on head or not.
bat.isSortedReverse Returns whether a BAT is ordered on head or not.
bat.isSynced Tests whether two BATs are synced or not.
bat.isTransient
bat.isaKey return whether the head column of a BAT is unique (key).
bat.isaSet return whether the BAT mode is set to unique.
bat.load Load a particular BAT from disk
bat.mirror Returns the head-mirror image of a BAT (two head columns).
bat.new Localize a bat by name and produce a clone.
bat.newIterator Process the buns one by one extracted from a void table.
bat.order Sorts the BAT itself on the head, in place.
bat.orderReverse Reverse sorts the BAT itself on the head, in place.
bat.pack Pack a pair of values into a BAT.
bat.partition Create a series of cheap slices over the first argument
bat.reduce Drop auxillary BAT structures.
bat.replace Replace the tail value of one BUN that has some head value.
bat.reverse Returns the reverse view of a BAT (head is tail and tail is head).

BEWARE no copying is involved; input and output refer to the same
object!

bat.revert Puts all BUNs in a BAT in reverse order. (Belongs to the BAT sequence
module)

bat.save Save a BAT to storage, if it was loaded and dirty. Returns whether
IO was necessary. Please realize that calling this function violates the
atomic commit protocol!!

Appendix B: Instruction Help 261

bat.setAccess Try to change the update access priviliges to this BAT. Mode: r[ead-
only] - allow only read access. a[append-only] - allow reads and update.
w[riteable] - allow all operations. BATs are updatable by default. On
making a BAT read-only, all subsequent updates fail with an error
message.Returns the BAT itself.

bat.setAppendMode Change access privilige of BAT to append only
bat.setBase Give the non-empty BATs consecutive oid bases.
bat.setCold Makes a BAT very cold for the BBP. The chance of being choses for

swapout is big, afterwards.
bat.setColumn Give both columns of a BAT a new name.
bat.setGarbage Designate a BAT as garbage.
bat.setHash
bat.setHot Makes a BAT very hot for the BBP. The chance of being chosen for

swapout is small, afterwards.
bat.setKey Sets the ’key’ property of the head column to ’mode’. In ’key’ mode, the

kernel will silently block insertions that cause a duplicate entries in the
head column. KNOWN BUG:when ’key’ is set to TRUE, this function
does not automatically eliminate duplicates. Use b := b.kunique;

bat.setMemoryAdvisealias for madvise(b, mode, mode, mode, mode)
bat.setMemoryMap Alias for mmap(b, mode, mode, mode, mode)
bat.setName Give a logical name to a BAT.
bat.setPersistent Make the BAT persistent. Returns boolean which indicates if the BAT

administration has indeed changed.
bat.setReadMode Change access privilige of BAT to read only
bat.setRole Give a logical name to the columns of a BAT.
bat.setSet Sets the ’set’ property on this BAT to ’mode’. In ’set’ mode, the ker-

nel will silently block insertions that cause a duplicate BUN [head,tail]
entries in the BAT. KNOWN BUG:when ’set’ is set to TRUE, this func-
tion does not automatically eliminate duplicates. Use b := b.sunique;
Returns the BAT itself.

bat.setSorted Assure BAT is ordered on the head.
bat.setTransient Make the BAT transient. Returns boolean which indicates if the BAT

administration has indeed changed.
bat.setWriteMode Change access privilige of BAT to read and write
bat.unload Swapout a BAT to disk. Transient BATs can also be swapped out.

Returns whether the unload indeed happened.
bat.unpack Extract the first tuple from a BAT.
batcalc.!= Equate a bat of strings against a singleton
batcalc.% Binary BAT calculator function with new BAT result
batcalc.* Binary BAT calculator function with new BAT result
batcalc.+ Concatenate two strings.
batcalc.++ Unary minus over the tail of the bat
batcalc.- Unary minus over the tail of the bat
batcalc.– Unary minus over the tail of the bat
batcalc./ Binary BAT calculator function with new BAT result
batcalc.< Compare a bat of timestamp against a singleton

Appendix B: Instruction Help 262

batcalc.<= Compare a bat of timestamp against a singleton
batcalc.== Equate a bat of strings against a singleton
batcalc.> Compare a bat of timestamp against a singleton
batcalc.>= Compare a bat of timestamp against a singleton
batcalc.abs Unary abs over the tail of the bat
batcalc.and Binary BAT calculator function with new BAT result
batcalc.bit Coerce an str tail to a bat with bit tail.
batcalc.bte Coerce an bit tail to a bat with bte tail.
batcalc.chr
batcalc.dbl Coerce an flt tail to a bat with dbl tail.
batcalc.flt Coerce an dbl tail to a bat with flt tail.
batcalc.ifthen Ifthen operation to assemble a conditional result
batcalc.ifthenelse If-then-else operation to assemble a conditional result
batcalc.int Coerce an str tail to a bat with int tail.
batcalc.isnil Unary check for nil over the tail of the bat
batcalc.lng Coerce an bit tail to a bat with lng tail.
batcalc.not Return a BAT with the negated tail
batcalc.oid Coerce an lng tail to a bat with oid tail.
batcalc.or Binary BAT calculator function with new BAT result
batcalc.sht Coerce an bit tail to a bat with sht tail.
batcalc.str
batcalc.wrd Coerce an bit tail to a bat with wrd tail.
batcalc.xor Binary BAT calculator function with new BAT result
batcolor.blue Extracts blue component from a color atom
batcolor.cb Extracts Cb(blue color) component from a color atom
batcolor.color Converts string to color
batcolor.cr Extracts Cr(red color) component from a color atom
batcolor.green Extracts green component from a color atom
batcolor.hsv Converts an HSV triplets to a color atom
batcolor.hue Extracts hue component from a color atom
batcolor.luminance Extracts Y(luminance) component from a color atom
batcolor.red Extracts red component from a color atom
batcolor.rgb Converts an RGB triplets to a color atom
batcolor.saturation Extracts saturation component from a color atom
batcolor.str Identity mapping for string bats
batcolor.value Extracts value component from a color atom
batmmath.acos
batmmath.asin
batmmath.atan
batmmath.atan2
batmmath.ceil
batmmath.cos
batmmath.cosh
batmmath.exp
batmmath.fabs
batmmath.floor
batmmath.fmod

Appendix B: Instruction Help 263

batmmath.log
batmmath.log10
batmmath.pow
batmmath.sin
batmmath.sinh
batmmath.sqrt
batmmath.tan
batmmath.tanh
batmtime.day
batmtime.hours
batmtime.milliseconds
batmtime.month
batmtime.seconds
batmtime.year
batstr.chrAt String array lookup operation.
batstr.endsWith Suffix check.
batstr.length Return the length of a string.
batstr.like
batstr.like uselect Perform SQL like operation against a string bat
batstr.ltrim Strip whitespaces from start of a string.
batstr.nbytes Return the string length in bytes.
batstr.r search Reverse search for a substring. Returns position, -1 if not found.
batstr.replace Insert a string into another
batstr.rtrim Strip whitespaces from end of a string.
batstr.search Search for a substring. Returns position, -1 if not found.
batstr.startsWith Prefix check.
batstr.string Return the tail s[offset..n] of a string s[0..n].
batstr.substitute Substitute first occurrence of ’src’ by ’dst’. Iff repeated = true this

is repeated while ’src’ can be found in the result string. In order to
prevent recursion and result strings of unlimited size, repeating is only
done iff src is not a substring of dst.

batstr.substring Substring extraction using [start,start+length]
batstr.toLower Convert a string to lower case.
batstr.toUpper Convert a string to upper case.
batstr.trim Strip whitespaces around a string.
batstr.unicodeAt get a unicode character (as an int) from a string position.
bbp.bind Locate the BAT using its BBP index in the BAT buffer pool
bbp.close Close the bbp box.
bbp.commit Commit updates for this client.
bbp.deposit Relate a logical name to a physical BAT in the buffer pool.
bbp.destroy Schedule a BAT for removal at session end or immediately.
bbp.discard Remove the BAT from the box.
bbp.getCount Create a BAT with the cardinalities of all known BATs
bbp.getDirty Create a BAT with the dirty/ diffs/clean status
bbp.getDiskSpace Estimate the amount of disk space occupied by dbfarm
bbp.getHeadType Map a BAT into its head type

Appendix B: Instruction Help 264

bbp.getHeat Create a BAT with the heat values
bbp.getKind Create a BAT with the persistency status
bbp.getLRefCount Utility for debugging MAL interpreter
bbp.getLocation Create a BAT with their disk locations
bbp.getName Map a BAT into its internal name
bbp.getNames Map BAT into its bbp name
bbp.getObjects View of the box content.
bbp.getPageSize Obtain the memory page size
bbp.getRNames Map a BAT into its bbp physical name
bbp.getRefCount Utility for debugging MAL interpreter
bbp.getStatus Create a BAT with the disk/load status
bbp.getTailType Map a BAT into its tail type
bbp.iterator Locate the next element in the box.
bbp.open Locate the bbp box and open it.
bbp.prelude Initialize the bbp box.
bbp.release Remove the BAT from further consideration
bbp.releaseAll Commit updates for this client.
bbp.take Load a particular bat.
bbp.toString Get the string representation of an element in the box.
blob.blob Noop routine.
blob.nitems get the number of bytes in this blob.
blob.prelude
blob.toblob store a string as a blob.
blob.tostring get the bytes from blob as a string, starting at byte ’index’ till the first

0 byte or the end of the blob.
box.close Close the box.
box.deposit Enter a new value into the box.
box.destroy Destroy the box.
box.discard Release the BAT from the client pool.
box.getBoxNames Retrieve the names of all boxes.
box.iterator Locates the next element in the box.
box.open Locate the box and open it.
box.release Release the BAT from the client pool.
box.releaseAll Release all objects for this client.
box.take Locate the typed value in the box.
box.toString Get the string representation of the i-th element in the box.
bpm.adapt Re-organize segment s using the selection (val1,val2) stored in bat rs.
bpm.addPartition Add a partition to a fragmented temporary table.
bpm.close Save and close the BAT partition box.
bpm.count
bpm.delete Delete elements from the BAT partitions.
bpm.deposit Create a new partitioned BAT by name.
bpm.derivePartition Create a derived fragmentation over the head using src.
bpm.destroy Destroy the BAT partition box.
bpm.discard Release all partitioned BATs.
bpm.dump Give the details of the partition tree

Appendix B: Instruction Help 265

bpm.emptySet Implement the empty set constraints test efficiently.
bpm.epilogue
bpm.fold Collapse the partitioned BAT into a single BAT.
bpm.garbage Remove a temporary partitioned table.
bpm.getDimension Obtain the partition boundary values.
bpm.getNames Retrieve the names of all known partitioned BATs.
bpm.getNumberOfPartitions

Return the number of partitions known
bpm.hasMoreElementsLocalize the next partition for processing.
bpm.hashPartition Create a hash partition on a BAT.
bpm.hashPartitions Ensure all partitions have a hash in the head.
bpm.insert Insert elements into the BAT partitions.
bpm.mapAlias
bpm.mapBid
bpm.mapName
bpm.mapNxt
bpm.mapPrv
bpm.mapThghDbl
bpm.mapThghLng
bpm.mapTlowDbl
bpm.mapTlowLng
bpm.new Create a temporary partitioned table.
bpm.newIterator Create an iterator over the BAT partitions.
bpm.open Locate and open the BAT partition box.
bpm.partition Split all partitions that cover the split value.
bpm.pieces Count the number of partitions.
bpm.prelude
bpm.rangePartition Create the partitions based on a range vector.
bpm.rangePartitionSort

Create the partitions based on a range vector.
bpm.replace Replace the content of the BAT partitions.
bpm.saveCatalog
bpm.select Partitioned based selection
bpm.sortPartitions Sort all partitions of alias b on the tail.
bpm.sortTail Implement the sort on tail for partitioned BAT efficiently.
bpm.splitquant Split all partitions to fit into a memory bound in KB
bpm.take Retrieve a single component of a partitioned BAT by index.
bpm.unfold Unfold a BAT into a partitioned one.
bstream.create create a buffered stream
bstream.destroy destroy bstream
bstream.read read at least size bytes into the buffer of s
calc.!= Inequality of two inets
calc.%
calc.*
calc.+ Concatenate two strings
calc.- negative value
calc./

Appendix B: Instruction Help 266

calc.< Whether v is less than w
calc.<<
calc.<= Whether v is less than or equal to w
calc.= Equality of two inets
calc.== Equality of two timestamps
calc.> Whether v is greater than w
calc.>= Whether v is equal to or greater than w
calc.>>
calc.abs absolute value
calc.and
calc.bat
calc.between
calc.bit coercion dbl to bit
calc.blob
calc.bte coercion lng to bte
calc.chr coercion lng to chr
calc.date
calc.daytime
calc.dbl coercion lng to dbl
calc.flt coercion lng to flt
calc.getBAT Coerce bat to BAT identifier
calc.getBATidentifier

Coerce bat to BAT identifier
calc.ifthenelse
calc.inet Convert a string to an inet
calc.int coercion dbl to int
calc.inv inverse value (1/x)
calc.isnil Nil test for inet value
calc.isnotnil is a value not equal to nil?
calc.length
calc.lng coercion dbl to lng
calc.max Maximum test for timestamp value
calc.max no nil Maximum test for timestamp value
calc.min Minimum test for timestamp value
calc.min no nil Minimum test for timestamp value
calc.newoid Reserves a range of consecutive unique OIDs; returns the lowest in

range. equivalent to newoid(0,incr)
calc.not
calc.oid coercion dbl to oid
calc.or
calc.ptr
calc.setoid Equivalent to setoid(1:oid).
calc.sht coercion dbl to sht
calc.sign Returns +1, 0, -1 based on the sign of the given expression
calc.sizeof
calc.sqladd

Appendix B: Instruction Help 267

calc.sqlblob
calc.str coercion dbl to str
calc.timestamp
calc.void
calc.wrd coercion dbl to wrd
calc.xor
clients.addScenario add the given scenario to the allowed scenarios for the given user
clients.addUser Allow user with password access to the given scenarios
clients.changePassword

Change the password for the current user
clients.changeUsername

Change the username of the user into the new string
clients.checkPermission

Check permission for a user
clients.exit Terminate the session for a single client using a soft error.
clients.getActions Pseudo bat of client’s command counts.
clients.getId Return a number that uniquely represents the current client.
clients.getInfo Pseudo bat with client attributes.
clients.getLastCommand

Pseudo bat of client’s last command time.
clients.getLogins Pseudo bat of client login time.
clients.getScenario Retrieve current scenario name.
clients.getTime Pseudo bat of client’s total time usage(in usec).
clients.getUsername Return the username of the currently logged in user
clients.getUsers return a BAT with user id and name available in the system with access

to the given scenario(s)
clients.quit Terminate the server. This command can only be initiated from the

console.
clients.removeScenario

remove the given scenario from the allowed scenarios for the given user
clients.removeUser Remove the given user from the system
clients.setHistory Designate console history file for readline.
clients.setListing Turn on/off echo of MAL instructions: 2 - show mal instruction, 4 -

show details of type resolutoin, 8 - show binding information.
clients.setPassword Set the password for the given user
clients.setScenario Switch to other scenario handler, return previous one.
clients.shutdown Close all client connections. If forced=false the clients are moved into

FINISHING mode, which means that the process stops at the next
cycle of the scenario. If forced=true all client processes are immediately
killed

clients.stop Stop the query execution at the next eligble statement.
clients.suspend Put a client process to sleep for some time. It will simple sleep for a

second at a time, until the awake bit has been set in its descriptor
clients.wakeup Wakeup a client process
cluster.column Reorder tail of the BAT using the cluster map
cluster.key Create the hash key list

Appendix B: Instruction Help 268

cluster.map Reorder tail of bat b, using a cluster map
cluster.new Compute the cluster map for bat b of hash key values. A cluster map is

a list of unique (new) BUN positions. The p(refix) sum is a by product
which returns the prefix sum of the per masked key frequency.

cluster.table Cluster the BATs using the first one as reference. Return the oid map
used

color.blue Extracts blue component from a color atom
color.cb Extracts Cb(blue color) component from a color atom
color.color Converts string to color
color.cr Extracts Cr(red color) component from a color atom
color.green Extracts green component from a color atom
color.hsv Converts an HSV triplets to a color atom
color.hue Extracts hue component from a color atom
color.luminance Extracts Y(luminance) component from a color atom
color.red Extracts red component from a color atom
color.rgb Converts an RGB triplets to a color atom
color.saturation Extracts saturation component from a color atom
color.str Converts color to string
color.value Extracts value component from a color atom
color.ycc Converts an YCC triplets to a color atom
const.close Close the constant box.
const.deposit Add a variable to the box.
const.destroy Destroy the box.
const.discard Release the const from the box.
const.epiloque Cleanup the const box
const.hasMoreElements

Locate next element in the box.
const.newIterator Locate next element in the box.
const.open Locate and open the constant box.
const.prelude Initialize the const box
const.release Release a constant value.
const.releaseAll Release all variables in the box.
const.take Take a variable out of the box.
const.toString Get the string representation of an element in the box.
constraints.emptySetCheck if the BAT is empty.
crackers.DeleteMap Throw away a certain map
crackers.InsertAVLIndex

Insert u in the AVL tree index of BAT b
crackers.activeCacheConsciousCrackHashJoin

Join two maps based on head values with active cracking. Align the
maps to avoid overlapping pieces. Reuse hash tables

crackers.alignJoin Join and on the fly align a map with an intermediate result bat, i.e.,
not cracked

crackers.alignedJoin Join an aligned cracker bat with a map
crackers.bandJoin Band Join two maps based on head values. Continuously crack the

right BAT for each tuple of the left one

Appendix B: Instruction Help 269

crackers.buildAVLIndex
Create an AVL tree index for this BAT

crackers.cacheConsciousCrackHashJoin
Join two maps based on head values. Align the maps to avoid overlap-
ping pieces. Reuse hash tables

crackers.cacheConsciousCrackHashJoinAlignOnly
Join two maps based on head values. Align the maps to avoid overlap-
ping pieces. Reuse hash tables

crackers.crackHashJoin
Join two maps based on head values. Align the maps to avoid overlap-
ping pieces. Reuse hash tables

crackers.crackJoin Join two maps based on head values. Align the maps to avoid overlap-
ping pieces

crackers.crackOrdered
Break a BAT into three pieces with tail<mid, tail==mid, tail>mid,
respectively; maintaining the head-oid order within each piece.

crackers.crackOrdered validate
Validate whether a BAT is correctly broken into five pieces with
tail<low, tail==low, low<tail<hgh, tail==hgh, tail>hgh, respectively;
maintaining the head-oid order within each piece.

crackers.crackUnordered validate
Validate whether a BAT is correctly broken into five pieces with
tail<low, tail==low, low<tail<hgh, tail==hgh, tail>hgh, respectively.

crackers.deleteAVL Delete a collection of values from the index
crackers.deletionsOnNeed

Keep the deletions BAT separatelly and do a complete merge only if a
relevant query arrives in the future

crackers.deletionsOnNeedGradually
Keep the deletions BAT separatelly and merge only what is needed if
a relevant query arrives in the future

crackers.deletionsOnNeedGraduallyRipple
Keep the deletions BAT separatelly and merge only what is needed
using ripple if a relevant query arrives in the future

crackers.djoinselect Use the pivot. For each tuple in pivot with a 0, check if the respective
tuple (in the same position) in the tail of cpair satisfies the range
restriction. If yes mark the pivot BUN as 1.

crackers.dproject Sync the cracking pair and project the tail. Use for disjunctive queries
that require a larger bit vector

crackers.dselect Crack based on dbl and evaluate the dbl disjunctive predicate outside
the cracked area. Return a bit vector.

crackers.extendCrackerBAT
Extend the cracker column by P positions

crackers.extendCrackerMap
Extend the cracker map by P positions

crackers.fmaddReference

Appendix B: Instruction Help 270

add bp reference to map set of b
crackers.fmclearReferences

clear all references
crackers.fmcreateMapmake new map for debugging
crackers.fmremoveMapclear all debugging map
crackers.fullAlignment

Align a bat with the cracks on a map
crackers.getCrackerBAT

Get the cracker BAT of b
crackers.getMap Get a certain map
crackers.getTotalStorage

Get the number of total tuples stored in sideways maps
crackers.hselect Retrieve the subset head using a cracker index producing preferably a

BATview.
crackers.insert Keep the insertions BAT separatelly and merge in the future on de-

mand with the Ripple
crackers.insertionsBForce

Merge the insertions BAT with the cracker bat and update the cracker
index

crackers.insertionsBOnNeed
Keep the insertions BAT separatelly and do a complete merge only if
a relevant query arrives in the future

crackers.insertionsBOnNeedGradually
Keep the insertions BAT separatelly and merge only what is needed if
a relevant query arrives in the future

crackers.insertionsBOnNeedGraduallyRipple
Keep the insertions BAT separatelly and merge only what is needed
using the ripple strategy if a relevant query arrives in the future

crackers.insertionsForget
Append c to the cracked BAT of b and completelly forget the cracker
index

crackers.insertionsPartiallyForget
Append c to the cracked BAT of b and partially forget the cracker
index, i.e., forget only what is affected

crackers.joinselect Use the pivot. For each tuple in pivot with a 1, check if the respective
tuple (in the same position) in the tail of cpair satisfies the range
restriction. If not mark the pivot BUN as 0.

crackers.joinuselect Join left and right on head-OIDs. From right, only those BUNs qualify
that satisfy the range-restriction on the tail. If inPlace is TRUE (and
left has an OID head and is not a BAT-view), we operate in-place, over-
writing left and returning it as result. Otherwise, the result is a new
[:oid,:void] BAT. If isForeignKey is TRUE, we assume that each tuple
from left finds a match in right, and hence skip the respective check.
(NOTE: This may lead to CRASHES, if isForeignKey is incorrectly
passed as TRUE!)

crackers.mapCount Retrieve the size of the map

Appendix B: Instruction Help 271

crackers.markedproject
Sync the cracking pair and project the tail. The result bat has a marked
head

crackers.materializeHead
Materialize the head of BAT b

crackers.pmaddReference
add bp reference to map set of b

crackers.pmclearReferences
clear all references to b

crackers.pmjoinselect
Use the pivot. For each tuple in pivot with a 1, check if the respective
tuple (in the same position) in the tail of cpair(collection of pieces)
satisfies the range restriction. If not mark the pivot BUN as 0.

crackers.pmmaxTail Sync/crack the map and get the max of the tail
crackers.pmproject Sync the map and project the tail based on the pivot
crackers.pmselect Crack based on dbl and evaluate the dbl conjunctive predicate. Return

a bit vector.
crackers.pmtselect Crack based on dbl and project the dbl tail .
crackers.positionproject

Sync the cracking pair and project the tail. The pivot holds the posi-
tions to be projected

crackers.printAVLTree int
Print the AVL Tree of the cracker index (for debugging purposes)

crackers.printCrackerBAT
Print the cracker BAT of b

crackers.printCrackerDeletions
Print the pending deletions of the cracker BAT of b

crackers.printCrackerIndexBATpart
Print the cracker index of b

crackers.printCrackerInsertions
Print the pending insertions of the cracker BAT of b

crackers.printPendingInsertions
Print the pending insertions

crackers.project Sync the cracking pair and project the tail
crackers.projectH Sync the cracking pair and project the head
crackers.select Retrieve the subset using a cracker index producing preferably a

BATview.
crackers.select2 Similar to select but always make sure that we do not create a large

piece i.e., bigger than half the size of the cracked piece
crackers.selectAVL Retrieve the subset using the AVL index
crackers.setStorageThreshold

set the maximum number of total tuples that can be stored in sideways
maps

crackers.simpleJoin Join two maps based on head values by exploiting the already existing
partitioning information

crackers.singlePassJoin

Appendix B: Instruction Help 272

First partition on separate pieces the left input based on the right
index. Then join matching pieces

crackers.sizeCrackerDeletions
Get the size of the pending deletions of the cracker BAT of b

crackers.sizeCrackerInsertions
Get the size of the pending insertions of the cracker BAT of b

crackers.sizePendingInsertions
Get the size of the pending insertions for this map

crackers.sortBandJoin
Band Join two maps based on head values. First sort the right BAT
and then continuously binary search the right BAT for each tuple of
the left one

crackers.tselect Retrieve the subset tail using a cracker index producing preferably a
BATview.

crackers.uselect Retrieve the subset using a cracker index producing preferably a
BATview.

crackers.verifyCrackerIndex
Check the cracker index and column, whether each value is in the
correct chunk

crackers.zcrackOrdered
Break a BAT into three pieces with tail<=low, low<tail<=hgh,
tail>hgh, respectively; maintaining the head-oid order within each
piece.

crackers.zcrackOrdered validate
Validate whether a BAT is correctly broken into three pieces with
tail<=low, low<tail<=hgh, tail>hgh, respectively; maintaining the
head-oid order within each piece.

crackers.zcrackUnordered
Break a BAT into three pieces with tail<=low, low<tail<=hgh,
tail>hgh, respectively.

crackers.zcrackUnordered validate
Validate whether a BAT is correctly broken into three pieces with
tail<=low, low<tail<=hgh, tail>hgh, respectively.

date.!= Equality of two dates
date.< Equality of two dates
date.<= Equality of two dates
date.== Equality of two dates
date.> Equality of two dates
date.>= Equality of two dates
date.date Noop routine.
date.isnil Nil test for date value
daytime.!= Equality of two daytimes
daytime.< Equality of two daytimes
daytime.<= Equality of two daytimes
daytime.== Equality of two daytimes
daytime.> Equality of two daytimes

Appendix B: Instruction Help 273

daytime.>= Equality of two daytimes
daytime.isnil Nil test for daytime value
factories.getArrival Retrieve the time stamp the last call was made.
factories.getCaller Retrieve the unique identity of the factory caller.
factories.getDeparture

Retrieve the time stamp the last answer was returned.
factories.getOwners Retrieve the factory owners table.
factories.getPlants Retrieve the names for all active factories.
factories.shutdown Close a factory.
group.avg grouped tail average
group.count Grouped count
group.derive Cross tabulation group extension step. Returned head values are iden-

tical as in ’ct’. Tail values are from the same domain and indicate
further refinement of the groups in ’ct’, taking into account also the
tail-values in ’attr’.

group.max Select the minimum element of each group
group.min Select the minimum element of each group
group.new Cross tabulation group initialization like GRPgroup, but with user

provided #bits in hashmask and #distinct values in range.
group.prelude
group.refine refine the ordering of a tail-ordered BAT by sub-ordering on the values

of a second bat ’a’ (where the heads of a and b match 1-1). The effect
of this is similar to (hash-based) GRPderive, with the distinction that
the group ids respect the ordering of the group values.

group.refine reverse refine the ordering of a tail-ordered BAT by sub-ordering on the values
of a second bat ’a’ (where the heads of a and b match 1-1). The effect
of this is similar to (hash-based) GRPderive, with the distinction that
the group ids respect the ordering of the group values.

group.size Grouped count of true values
group.sum Tail sum of groups of a sliding window of fixed size
group.variance grouped tail variance
identifier.identifier

Cast a string to an identifer
identifier.prelude Initialize the module
inet.!= Inequality of two inets
inet.< Whether v is less than w
inet.<< Whether v is contained within w
inet.<<= Whether v is contained within or is equal to w
inet.<= Whether v is less than or equal to w
inet.= Equality of two inets
inet.> Whether v is greater than w
inet.>= Whether v is equal to or greater than w
inet.>> Whether v contains w
inet.>>= Whether v contains or is equal to w
inet.abbrev Abbreviated display format as text
inet.broadcast Returns the broadcast address for network

Appendix B: Instruction Help 274

inet.host Extract IP address as text
inet.hostmask Construct host mask for network
inet.isnil Nil test for inet value
inet.masklen Extract netmask length
inet.netmask Construct netmask for network
inet.network Extract network part of address
inet.new Create an inet from a string literal
inet.setmasklen Set netmask length for inet value
inet.text Extract IP address and netmask length as text
inspect.equalType Return true if both operands are of the same type
inspect.getAddress Returns the function signature(s).
inspect.getAddressesObtain the function address.
inspect.getAtomNamesCollect a BAT with the atom names.
inspect.getAtomSizesCollect a BAT with the atom sizes.
inspect.getAtomSuperCollect a BAT with the atom names.
inspect.getCommentReturns the function help information.
inspect.getDefinition

Returns a string representation of a specific function.
inspect.getEnvironment

Collect the environment variables.
inspect.getFunction Obtain the function name.
inspect.getKind Obtain the instruction kind.
inspect.getModule Obtain the function name.
inspect.getSignatureReturns the function signature(s).
inspect.getSignatures

Obtain the function signatures.
inspect.getSize Return the storage size for a function (in bytes).
inspect.getSource Return the original input for a function.
inspect.getStatistics

Get optimizer property statistics such as #calls, #total actions, #total
time

inspect.getType Return the concrete type of a variable (expression).
inspect.getTypeIndexReturn the type index of a variable. For BATs, return the type index

for its tail.
inspect.getTypeNameGet the type name associated with a type id.
inspect.getWelcome Return the server message of the day string
io.data Signals receipt of tuples in a file fname. It returns the name of the file,

if it still exists.
io.export Export a BAT as ASCII to a file. If the ’filepath’ is not absolute, it is

put into the .../dbfarm/$DB directory. Success of failure is indicated.
io.ftable Print an n-ary table to a file.
io.import Import a BAT from an ASCII dump. The new tuples are *inserted*

into the parameter BAT. You have to create it! Its signature must
match the dump, else parsing errors will occur and FALSE is returned.

io.print Print a MAL value tuple .
io.printf Select default format

Appendix B: Instruction Help 275

io.prompt Print a MAL value without brackets.
io.stderr return the error stream for the database console
io.stdin return the input stream to the database client
io.stdout return the output stream for the database client
io.table Print an n-ary table.
language.assert Assertion test.
language.assertSpaceEnsures that the current call does not consume more than depth*vtop

elements on the stack.
language.call Evaluate a program stored in a BAT.
language.dataflow The current guarded block is executed using dataflow control.
language.newRange This routine introduces an iterator over a scalar domain.
language.nextElementAdvances the iterator with a fixed value until it becomes >= last.
language.raise Raise an exception labeled with a specific message.
language.register Compile the code string and register it as a MAL function.
language.setIOTraceSet the flag to trace the IO
language.setMemoryTrace

Set the flag to trace the memory footprint
language.setThreadTrace

Set the flag to trace the interpreter threads
language.setTimerTrace

Set the flag to trace the execution time
language.source Merge the instructions stored in the file with the current program.
lock.create Create an unset lock
lock.destroy Destroy a lock
lock.set Try to set a lock. If set, block till it is freed
lock.tostr Overloaded atom function
lock.try Try a lock. If free set it, if not return EBUSY
lock.unset Unset a lock
mal.multiplex
manual.completion Produces the wordcompletion table.
manual.createXML Produces a XML-formatted manual over all modules loaded.
manual.help Produces a list of all <module>.<function> that match the text pattern.

The wildcard ’*’ can be used for <module> and <function>. Using the
’(’ asks for signature information and using ’)’ asks for the complete
help record.

manual.index Produces an overview of all names grouped by module.
manual.search Search the manual for command descriptions that match the regular

expression ’text’
manual.section Generate a synopsis of a module for the reference manual
manual.summary Produces a manual with help lines grouped by module.
mapi.bind Bind a remote variable to a local one.
mapi.connect Establish connection with a remote mserver.
mapi.connect ssl Establish connection with a remote mserver using the secure socket

layer.
mapi.destroy Destroy the handle for an Mserver.
mapi.disconnect Terminate the session.

Appendix B: Instruction Help 276

mapi.error Check for an error in the communication.
mapi.explain Turn the error seen into a string.
mapi.fetch all rows Retrieve all rows into the cache.
mapi.fetch field Retrieve a single chr field.
mapi.fetch field array

Retrieve all fields for a row.
mapi.fetch line Retrieve a complete line.
mapi.fetch reset Reset the cache read line.
mapi.fetch row Retrieve the next row for analysis.
mapi.finish Remove all remaining answers.
mapi.getError Get error message.
mapi.get field countReturn number of fields.
mapi.get row count Return number of rows.
mapi.listen Start the Mapi listener on <port> for <maxusers>. For a new client con-

nection MAL procedure <cmd>(Stream s in, Stream s out) is called.If
no <cmd> is specified a new client thread is forked.

mapi.listen ssl Start the Mapi listener on <port> for <maxusers> using SSL. <keyfile>
and <certfile> give the path names for files with the server key and cer-
tificates in PEM format. For a new client connection MAL procedure
<cmd>(Stream s in, Stream s out) is called. If no <cmd> is specified a
new client thread is forked.

mapi.lookup Retrieve the connection identifier.
mapi.malclient Start a Mapi client for a particular stream pair.
mapi.next result Go to next result set.
mapi.ping Test availability of an Mserver.
mapi.prepare Prepare a query for execution.
mapi.put Prepare sending a value to a remote site.
mapi.query Sent the query for execution
mapi.query array Sent the query for execution replacing ’?’ by arguments.
mapi.query handle Sent the query for execution.
mapi.reconnect Re-establish a connection.
mapi.resume Resume connection listeners.
mapi.rpc Sent a simple query for execution.
mapi.setAlias Give the channel a logical name.
mapi.stop Terminate connection listeners.
mapi.suspend Suspend accepting connections.
mapi.trace Toggle the Mapi library debug tracer.
mat.hasMoreElementsFind the next element in the merge table
mat.info retrieve the definition from the partition catalogue
mat.new Define a Merge Association Table (MAT)
mat.newIterator Create an iterator over a MAT
mat.pack Materialize the MAT into the first BAT
mat.print
mdb.List Dump the routine M.F on standard out.
mdb.collect Dump the previous instruction to a temporary file

Appendix B: Instruction Help 277

mdb.dot Dump the data flow of the function M.F in a format recognizable by
the command ’dot’ on the file s

mdb.dump Dump instruction, stacktrace, and stack
mdb.getContext Extract the context string from the exception message
mdb.getDebug Get the kernel debugging bit-set. See the MonetDB configuration file

for details
mdb.getDefinition Returns a string representation of the current function with typing

information attached
mdb.getException Extract the variable name from the exception message
mdb.getReason Extract the reason from the exception message
mdb.getStackDepth Return the depth of the calling stack.
mdb.getStackFrame Collect variable binding of current (n-th) stack frame.
mdb.getStackTrace
mdb.grab Stop and debug another client process.
mdb.inspect Run the debugger on a specific function
mdb.lifespan Dump the current routine lifespan information on standard out.
mdb.list Dump the routine M.F on standard out.
mdb.listMapi Dump the current routine on standard out with Mapi prefix.
mdb.modules List available modules
mdb.setCatch Turn on/off catching exceptions
mdb.setCount Turn on/off bat count statistics tracing
mdb.setDebug Set the kernel debugging bit-set and return its previous value.
mdb.setFlow Turn on/off memory flow debugger
mdb.setIO Turn on/off io statistics tracing
mdb.setMemory Turn on/off memory statistics tracing.
mdb.setMemoryTraceTurn on/off memory foot print tracer for debugger
mdb.setThread Turn on/off thread identity for debugger
mdb.setTimer Turn on/off performance timer for debugger
mdb.setTrace Turn on/off tracing of a variable
mdb.start Start interactive debugger on a running factory
mdb.stop Stop the interactive debugger
mdb.var Dump the symboltable of routine M.F on standard out.
mkey.bulk rotate xor hash

pre: h and b should be synced on head post: [:xor=]([:rotate=](h,
nbits), [hash](b))

mkey.hash compute a hash int number from any value
mkey.rotate left-rotate an int by nbits
mmath.acos The acos(x) function calculates the arc cosine of x, that is the value

whose cosine is x. The value is returned in radians and is mathemati-
cally defined to be between 0 and PI (inclusive).

mmath.asin The asin(x) function calculates the arc sine of x, that is the value whose
sine is x. The value is returned in radians and is mathematically defined
to be between -PI/20 and -PI/2 (inclusive).

mmath.atan The atan(x) function calculates the arc tangent of x, that is the value
whose tangent is x. The value is returned in radians and is mathemat-
ically defined to be between -PI/2 and PI/2 (inclusive).

Appendix B: Instruction Help 278

mmath.atan2 The atan2(x,y) function calculates the arc tangent of the two variables
x and y. It is similar to calculating the arc tangent of y / x, except
that the signs of both arguments are used to determine the quadrant
of the result. The value is returned in radians and is mathematically
defined to be between -PI/2 and PI/2 (inclusive).

mmath.ceil The ceil(x) function rounds x upwards to the nearest integer.
mmath.cos The cos(x) function returns the cosine of x, where x is given in radians.

The return value is between -1 and 1.
mmath.cosh The cosh() function returns the hyperbolic cosine of x, which is defined

mathematically as (exp(x) + exp(-x)) / 2.
mmath.cot The cot(x) function returns the Cotangent of x, where x is given in

radians
mmath.exp The exp(x) function returns the value of e (the base of natural loga-

rithms) raised to the power of x.
mmath.fabs The fabs(x) function returns the absolute value of the floating-point

number x.
mmath.finite The finite(x) function returns true if x is neither infinite nor a ’not-a-

number’ (NaN) value, and false otherwise.
mmath.floor The floor(x) function rounds x downwards to the nearest integer.
mmath.fmod The fmod(x,y) function computes the remainder of dividing x by y.

The return value is x - n * y, where n is the quotient of x / y, rounded
towards zero to an integer.

mmath.isinf The isinf(x) function returns -1 if x represents negative infinity, 1 if x
represents positive infinity, and 0 otherwise.

mmath.isnan The isnan(x) function returns true if x is ’not-a-number’ (NaN), and
false otherwise.

mmath.log The log(x) function returns the natural logarithm of x.
mmath.log10 The log10(x) function returns the base-10 logarithm of x.
mmath.pi return an important mathematical value
mmath.pow The pow(x,y) function returns the value of x raised to the power of y.
mmath.rand return a random number
mmath.round The round(n, m) returns n rounded to m places to the right of the

decimal point; if m is omitted, to 0 places. m can be negative to round
off digits left of the decimal point. m must be an integer.

mmath.sin The sin(x) function returns the cosine of x, where x is given in radians.
The return value is between -1 and 1.

mmath.sinh The sinh() function returns the hyperbolic sine of x, which is defined
mathematically as (exp(x) - exp(-x)) / 2.

mmath.sqrt The sqrt(x) function returns the non-negative square root of x.
mmath.srand initialize the rand() function with a seed
mmath.tan The tan(x) function returns the tangent of x, where x is given in radians
mmath.tanh The tanh() function returns the hyperbolic tangent of x, which is de-

fined mathematically as sinh(x) / cosh(x).
mtime.add returns the timestamp that comes ’msecs’ (possibly negative) after

’value’.

Appendix B: Instruction Help 279

mtime.adddays returns the date after a number of days (possibly negative).
mtime.addmonths returns the date after a number of months (possibly negative).
mtime.addyears returns the date after a number of years (possibly negative).
mtime.compute compute the date from a rule in a given year
mtime.current date
mtime.current time
mtime.current timestamp
mtime.date extracts date from timestamp in a specific timezone.
mtime.date add month interval

Add months to a date
mtime.date add sec interval

Add seconds to a date
mtime.date sub sec interval

Subtract seconds from a date
mtime.date to str create a string from the date, using the specified format (see man

strftime)
mtime.day extract day from rule.
mtime.dayname Returns day name from a number between [1-7], str(nil) otherwise.
mtime.daynum Returns number of day [1-7] from a string or nil if does not match any.
mtime.dayofweek Returns the current day of the week where 1=sunday, .., 7=saturday
mtime.dayofyear Returns N where d is the Nth day of the year (january 1 returns 1)
mtime.daytime default time with zeroed components
mtime.diff returns the number of milliseconds between ’val1’ and ’val2’.
mtime.dst return whether DST holds in the timezone at a certain point of time.
mtime.end dst extract rule that determines end of DST from timezone.
mtime.epilogue
mtime.hours extracts hour from daytime
mtime.local timezoneget the local timezone in seconds
mtime.milliseconds extracts milliseconds from daytime
mtime.minutes extract minutes from rule.
mtime.month extract month from rule.
mtime.monthname Returns month name from a number between [1-12], str(nil) otherwise.
mtime.monthnum Returns month number [1-12] from a string or nil if does not match

any.
mtime.msec get time of day in msec since 1-1-1970.
mtime.msecs convert date components to milliseconds
mtime.olddate create a date from the old instant format.
mtime.oldduration parse the old duration format and return an (estimated) number of

days.
mtime.prelude
mtime.rule create a DST start/end date rule.
mtime.seconds extracts seconds from daytime
mtime.setTimezone Test and set the timezone.
mtime.start dst extract rule that determines start of DST from timezone.
mtime.str to date create a date from the string, using the specified format (see man

strptime)

Appendix B: Instruction Help 280

mtime.time add sec interval
Add seconds to a time

mtime.time sub sec interval
Subtract seconds from a time

mtime.time synonymsAllow synonyms for the parse format of date/timestamp.
mtime.timestamp creates a timestamp from (d,00:00:00) parameters (in the local

timezone).
mtime.timestamp add month interval

Add months to a timestamp
mtime.timestamp add sec interval
mtime.timestamp sub month interval

Subtract months from a timestamp
mtime.timestamp sub sec interval
mtime.timezone create a timezone as an hour difference from GMT and a DST.
mtime.timezone localget the local timezone; which is used for printing timestamps
mtime.weekday extract weekday from rule.
mtime.weekofyear Returns the week number in the year.
mtime.year extracts year from date (nonzero value between -5867411 and

+5867411).
optimizer.accessmodeReduce the number of mode changes.
optimizer.accumulators

Replace calculations with accumulator model
optimizer.aliases Alias removal optimizer
optimizer.clrDebug
optimizer.coercions Handle simple type coercions
optimizer.commonTerms

Common sub-expression optimizer
optimizer.constants Duplicate constant removal optimizer
optimizer.costModel Estimate the cost of a relational expression
optimizer.crack Replace algebra select with crackers select
optimizer.dataflow Dataflow bracket code injection
optimizer.deadcode Dead code optimizer
optimizer.dumpQEPProduce an indented tree visualisation
optimizer.emptySet Symbolic evaluation of empty BAT expressions
optimizer.evaluate Evaluate constant expressions once.
optimizer.factorize Turn function into a factory
optimizer.garbageCollector

Garbage collector optimizer
optimizer.heuristics Handle simple replacements
optimizer.history Collect SQL query statistics
optimizer.inline Expand inline functions
optimizer.joinPath Join path constructor
optimizer.joinselect Replace select with join select
optimizer.macro Inline a target function used in a specific function.
optimizer.mergetableResolve the multi-table definitions
optimizer.mitosis Modify the plan to exploit parallel processing on multiple cores

Appendix B: Instruction Help 281

optimizer.multiplex Compiler for multiplexed instructions.
optimizer.octopus Map-execute-reduce parallelism optimizer
optimizer.optimize Optimize a specific operation
optimizer.orcam Inverse macro, find pattern and replace with a function call.
optimizer.partitions Experiment with partitioned databases
optimizer.peephole Perform local rewrites
optimizer.prelude Initialize the optimizer
optimizer.pushrangesPush constant range selections through the program
optimizer.recycle Replicator code injection
optimizer.reduce Reduce the stack space claims
optimizer.remap Remapping function calls to a their multiplex variant
optimizer.remoteQueries

Resolve the multi-table definitions
optimizer.replicator Replication optimizer
optimizer.setDebug
optimizer.showFlowGraph

Dump the data flow of the function M.F in a format recognizable by
the command ’dot’ on the file s

optimizer.showPlan Illustrate the plan derived so far
optimizer.singleton Perform singleton optimization
optimizer.strengthReduction

Move constant expressions out of the loop
optimizer.trace Collect trace of a specific operation
pcre.compile compile a pattern
pcre.index match a pattern, return matched position (or 0 when not found)
pcre.like uselect
pcre.match POSIX pattern matching against a string
pcre.patindex Location of the first POSIX pattern matching against a string
pcre.pcre quote Return a PCRE pattern string that matches the argument exactly.
pcre.prelude Initialize pcre
pcre.replace Replace all matches of "pattern" in "origin str" with "replacement".

Parameter "flags" accept these flags: ’i’, ’m’, ’s’, and ’x’. ’e’: if present,
an empty string is considered to be a valid match ’i’: if present, the
match operates in case-insensitive mode. Otherwise, in case-sensitive
mode. ’m’: if present, the match operates in multi-line mode. ’s’: if
present, the match operates in "dot-all" The specifications of the flags
can be found in "man pcreapi" The flag letters may be repeated. No
other letters than ’e’, ’i’, ’m’, ’s’ and ’x’ are allowed in "flags". Returns
the replaced string, or if no matches found, the original string.

pcre.select Select tuples based on the pattern
pcre.sql2pcre Convert a SQL like pattern with the given escape character into a

PCRE pattern.
pcre.uselect Select tuples based on the pattern, only returning the head
pqueue.dequeue maxRemoves top element of the max-pqueue and updates it
pqueue.dequeue minRemoves top element of the min-pqueue and updates it
pqueue.enqueue maxInserts element (oid,dbl) in the max-pqueue

Appendix B: Instruction Help 282

pqueue.enqueue minInserts element (oid,dbl) in the min-pqueue
pqueue.init Creates an empty pqueue of bat a’s tailtype with maximum size

maxsize
pqueue.topn max Return the topn elements of the bat t using a max-pqueue
pqueue.topn min Return the topn elements of the bat t using a min-pqueue
pqueue.topreplace max

Replaces top element with input and updates max-pqueue
pqueue.topreplace min

Replaces top element with input and updates min-pqueue
profiler.activate Make the specified counter active.
profiler.cleanup Remove the temporary tables for profiling
profiler.closeStream Stop sending the event records
profiler.clrFilter Stop tracing the variable
profiler.deactivate Deactivate the counter
profiler.dumpTrace List the events collected
profiler.getDiskReads

Obtain the number of physical reads
profiler.getDiskWrites

Obtain the number of physical reads
profiler.getEvent Retrieve the performance indicators of the previous instruction
profiler.getFootprint

Get the memory footprint and reset it
profiler.getMemory Get the amount of memory claimed and reset it
profiler.getSystemTime

Obtain the user timing information.
profiler.getTrace Get the trace details of a specific event
profiler.getUserTimeObtain the user timing information.
profiler.noop Fetch any pending performance events
profiler.openStream Send the log events to a stream
profiler.reset Clear the profiler traces
profiler.setAll Short cut for setFilter(*,*).
profiler.setEndPoint End performance tracing after mod.fcn
profiler.setFilter Generate an event record for every instruction where v is used.
profiler.setNone Short cut for clrFilter(*,*).
profiler.setStartPoint

Start performance tracing at mod.fcn
profiler.start Start performance tracing
profiler.stop Stop performance tracing
recycle.dump Dump summary of recycle table into a file
recycle.dumpQPat Dump statistics of query patterns
recycle.epilogue Called at the start of a recycle controlled function
recycle.getCachePolicy
recycle.getRetainPolicy
recycle.getReusePolicy
recycle.log Set the name of recycle log file

Appendix B: Instruction Help 283

recycle.monitor start/stop the monitoring (printing) of the recycler info (storage size
used and number of statements retained)

recycle.prelude Called at the start of a recycle controlled function
recycle.reset Reset off all recycled variables
recycle.setCachePolicy

Set recycler cache policy with alpha parameter
recycle.setRetainPolicy

Set recycler retainment policy: 0- RETAIN NONE: baseline, keeps
stat, no retain, no reuse 1- RETAIN ALL: infinite case, retain all
2- RETAIN CAT: time-based semantics, retain if beneficial 3- RE-
TAIN ADAPT: adaptive temporal

recycle.setReusePolicy
Set recycler reuse policy

recycle.shutdown Clear the recycle cache
recycle.start Initialize recycler for the current block
recycle.stop Cleans recycler bookkeeping
remote.connect Returns a newly created connection for dbname, user name and

password.
remote.create Create a user-defined connection to a server.
remote.destroy Destroy a previously user-defined connection to a server.
remote.disconnect Disconnects the connection for dbname.
remote.epilogue Release the resources held by the remote module.
remote.exec Remotely executes <mod>.<func> using the argument list of remote

objects and returns the handle to its result
remote.get Retrieves a copy of remote object ident.
remote.getList List available databases with their property for use with connect().
remote.prelude Initialise the remote module.
remote.put Copies object to the remote site and returns its identifier.
remote.register Register <mod>.<fcn> at the remote site.
replicator.bind Create a named persistent BAT if it was not known
replicator.bind dbat Create a named persistent BAT if it was not known
replicator.setMaster Mark the source of this database
replicator.setVersion

Keep the latest version in the symbol table as a constant
sabaoth.epilogue Release the resources held by the sabaoth module
sabaoth.getLocalConnectionHost

Returns the hostname this server can be connected to, or nil if none
sabaoth.getLocalConnectionPort

Returns the port this server can be connected to, or 0 if none
sabaoth.marchConnection

Publishes the given host/port as available for connecting to this server
sabaoth.marchScenario

Publishes the given language as available for this server
sabaoth.prelude Initialise the sabaoth module
sabaoth.retreatScenario

Unpublishes the given language as available for this server

Appendix B: Instruction Help 284

sabaoth.wildRetreat Unpublishes everything known for this server
scheduler.choice Select the next step in a query memo plan
scheduler.costPrediction

A sample cost prediction function
scheduler.drop Remove a worker from the list
scheduler.isolation Run a private copy of the MAL program
scheduler.octopus Run the program block in parallel, but don’t wait longer then t seconds
scheduler.pick Pick up the first result
scheduler.volumeCostA sample cost function based on materialized results
scheduler.worker Add a worker site to the known list
sema.create Create an unset sema, with an initial value
sema.destroy Destroy a semaphore
sema.down Decrement the semaphpore if >0; else block
sema.up Increment the semaphore
sql.forgetPrevious invalidate the previous instruction from future execution
sql.keepquery
sql.queryId
sqlblob.sqlblob Noop routine.
statistics.close Close the statistics box
statistics.deposit Enter a new BAT into the statistics box
statistics.destroy Destroy the statistics box
statistics.discard Release a BAT variable from the box
statistics.dump Display the statistics table
statistics.epilogue Release the resources of the statistics package
statistics.forceUpdate

Bring the statistics up to date for one BAT
statistics.getCount Return latest stored count information
statistics.getHistogram

Return the latest histogram
statistics.getHotset Return a table with BAT names that have been touched since the start

of the session
statistics.getMax Return latest stored maximum information
statistics.getMin Return latest stored minimum information
statistics.getObjects

Return a table with BAT names managed
statistics.getSize Return latest stored count information
statistics.hasMoreElements

Locate next element in the box
statistics.newIterator

Locate next element in the box
statistics.open Locate and open the statistics box
statistics.prelude Initialize the statistics package
statistics.release Release a single BAT from the box
statistics.releaseAll

Release all variables in the box
statistics.take Take a variable out of the statistics box

Appendix B: Instruction Help 285

statistics.toString Get the string representation of an element in the box
statistics.update Check for stale information
status.batStatistics Show distribution of bats by kind
status.cpuStatistics Global cpu usage information
status.getDatabases Produce a list of known databases in the current dbfarm
status.getPorts Produce a list of default ports for a specific language
status.getThreads Produce overview of active threads.
status.ioStatistics Global IO activity information
status.memStatisticsGlobal memory usage information
status.memUsage Get a split-up of how much memory blocks are in use.
status.mem cursize The amount of physical swapspace in KB that is currently in use.
status.mem maxsizeSet the maximum usable amount of physical swapspace in KB.
status.vmStatistics Get a split-up of how much virtual memory blocks are in use.
status.vm cursize the amount of logical VM space in KB that is currently in use
status.vm maxsize set the maximum usable amount of physical swapspace in KB
str.+ Concatenate two strings.
str.STRepilogue
str.STRprelude
str.ascii Return unicode of head of string
str.chrAt String array lookup operation.
str.codeset Return the locale’s codeset
str.endsWith Suffix check.
str.iconv String codeset conversion
str.insert Insert a string into another
str.length Return the length of a string.
str.like SQL pattern match function
str.locate Locate the start position of a string
str.ltrim Strip whitespaces from start of a string.
str.nbytes Return the string length in bytes.
str.prefix Extract the prefix of a given length
str.r search Reverse search for a char. Returns position, -1 if not found.
str.repeat
str.replace Insert a string into another
str.rtrim Strip whitespaces from end of a string.
str.search Search for a character. Returns position, -1 if not found.
str.space
str.startsWith Prefix check.
str.str Noop routine.
str.string Return substring s[offset..offset+count] of a string s[0..n]
str.stringleft
str.stringlength Return the length of a right trimed string (SQL semantics).
str.stringright
str.substitute Substitute first occurrence of ’src’ by ’dst’. Iff repeated = true this

is repeated while ’src’ can be found in the result string. In order to
prevent recursion and result strings of unlimited size, repeating is only
done iff src is not a substring of dst.

Appendix B: Instruction Help 286

str.substring Extract a substring from str starting at start, for length len
str.suffix Extract the suffix of a given length
str.toLower Convert a string to lower case.
str.toUpper Convert a string to upper case.
str.trim Strip whitespaces around a string.
str.unicode convert a unicode to a character.
str.unicodeAt get a unicode character (as an int) from a string position.
streams.blocked open a block based stream
streams.close close and destroy the stream s
streams.flush flush the stream
streams.openRead convert an ascii stream to binary
streams.openReadBytes

open a file stream for reading
streams.openWrite convert an ascii stream to binary
streams.openWriteBytes

open a file stream for writing
streams.readInt read integer data from the stream
streams.readStr read string data from the stream
streams.socketRead open ascii socket stream for reading
streams.socketReadBytes

open a socket stream for reading
streams.socketWrite open ascii socket stream for writing
streams.socketWriteBytes

open a socket stream for writing
streams.writeInt write data on the stream
streams.writeStr write data on the stream
tablet.display Display a formatted table
tablet.dump Print all pages with header to a stream
tablet.finish Free the storage space of the report descriptor
tablet.firstPage Produce the first page of output
tablet.getPage Produce the i-th page of output
tablet.getPageCnt Return the size in number of pages
tablet.header Display the minimal header for the table
tablet.input Load a bat using specific format.
tablet.lastPage Produce the last page of output
tablet.load Load a bat using specific format.
tablet.nextPage Produce the next page of output
tablet.output Send the bat to an output stream.
tablet.page Display all pages at once without header
tablet.prevPage Produce the prev page of output
tablet.setBracket Format the brackets around a field
tablet.setColumn Bind i-th output column to a variable
tablet.setComplaintsThe comlaints bat identifies all erroneous lines encountered
tablet.setDecimal Set the scale and precision for numeric values
tablet.setDelimiter Set the column separator.
tablet.setFormat Initialize a new reporting structure.
tablet.setName Set the display name for a given column

Appendix B: Instruction Help 287

tablet.setNull Set the display format for a null value for a given column
tablet.setPivot The pivot bat identifies the tuples of interest. The only requirement is

that all keys mentioned in the pivot tail exist in all BAT parameters
of the print comment. The pivot also provides control over the order
in which the tuples are produced.

tablet.setPosition Set the character position to use for this field when loading according
to fixed (punch-card) layout.

tablet.setProperties Define the set of properties
tablet.setRowBracketFormat the brackets around a row
tablet.setStream Redirect the output to a stream.
tablet.setTableBracket

Format the brackets around a table
tablet.setTryAll Skip error lines and assemble an error report
tablet.setWidth Set the maximal display witdh for a given column. All values exceeding

the length are simple shortened without any notice.
timestamp.!= Equality of two timestamps
timestamp.< Equality of two timestamps
timestamp.<= Equality of two timestamps
timestamp.== Equality of two timestamps
timestamp.> Equality of two timestamps
timestamp.>= Equality of two timestamps
timestamp.epoch convert seconds since epoch into a timestamp
timestamp.isnil Nil test for timestamp value
timestamp.unix epochThe Unix epoch time (00:00:00 UTC on January 1, 1970)
timezone.str
timezone.timestamp Utility function to create a timestamp from a number of seconds since

the Unix epoch
transaction.abort Abort changes in certain BATs.
transaction.alpha List insertions since last commit.
transaction.clean Declare a BAT clean without flushing to disk.
transaction.commit Commit changes in certain BATs.
transaction.delta List deletions since last commit.
transaction.prev The previous stae of this BAT
transaction.subcommit

commit only a set of BATnames, passed in the tail (to which you must
have exclusive access!)

transaction.sync Save all persistent BATs
txtsim.editdistance Alias for Levenshtein(str,str)
txtsim.editdistance2 Calculates Levenshtein distance (edit distance) between two strings.

Cost of transposition is 1 instead of 2
txtsim.levenshtein Calculates Levenshtein distance (edit distance) between two strings
txtsim.qgramnormalize

’Normalizes’ strings (eg. toUpper and replaces non-alphanumerics with
one space

txtsim.qgramselfjoinQGram self-join on ordered(!) qgram tables and sub-ordered q-gram
positions

Appendix B: Instruction Help 288

txtsim.similarity Normalized edit distance between two strings
txtsim.soundex Soundex function for phonetic matching
txtsim.str2qgrams
txtsim.stringdiff calculate the soundexed editdistance
unix.getenv Get the environment variable string.
unix.setenv Set the environment variable string.
url.getAnchor Extract the URL anchor (reference)
url.getBasename Extract the URL base file name
url.getContent Get the URL resource in a local file
url.getContext Get the path context of a URL
url.getDirectory Extract directory names from the URL
url.getDomain Extract Internet domain from the URL
url.getExtension Extract the file extension of the URL
url.getFile Extract the last file name of the URL
url.getHost Extract the server name from the URL
url.getPort Extract the port id from the URL
url.getProtocol Extract the protocol from the URL
url.getQuery Extract the query string from the URL
url.getQueryArg Extract argument mappings from the URL
url.getRobotURL Extract the location of the robot control file
url.getUser Extract the user identity from the URL
url.isaURL Check conformity of the URL syntax
url.new Construct URL from protocol, host,and file
url.url Create an URL from a string literal
user.main
zrule.define Introduce a synomym timezone rule.

	General Introduction
	Intended Audience
	How to read this manual
	Features and Limitations
	When to consider MonetDB ?
	When not to consider MonetDB ?
	What are key features of MonetDB
	Size Limitations for MonetDB

	A Brief History of MonetDB
	Manual Generation
	Conventions and Notation
	Additional Resources

	Downloads and Installation
	Developers Distribution
	Experts

	How To Start with MonetDB
	The Suite
	Prerequisites
	Space Requirements
	Getting the Software
	CVS checkout
	Bootstrap, Configure and Make
	Bootstrap
	Configure
	Configure defaults and recommendations
	Make
	Testing the Build
	Install
	Testing the Installation
	Usage
	Troubleshooting
	Reporting Problems
	Building MonetDB On Windows
	Introduction
	buildtools
	MonetDB
	clients
	MonetDB4
	MonetDB5
	sql
	pathfinder
	java
	geom
	testing
	Prerequisites
	CVS (Concurrent Version System)
	Compiler
	Python
	Bison
	Flex
	Pthreads
	Diff
	Patch
	PsKill
	PCRE (Perl Compatible Regular Expressions)
	OpenSSL
	libxml2
	geos (Geometry Engine Open Souce)
	Optional Packages
	iconv
	zlib
	Perl
	PHP
	SWIG (Simplified Wrapper and Interface Generator)
	Java
	Apache Ant
	Build Environment
	Placement of Sources
	Build Process
	Environment Variables
	Compiler
	Internal Variables
	PATH and PYTHONPATH
	Compilation
	Building and Installing Buildtools
	Building and Installing the Other Components
	Building Installers
	Daily Builds
	Stability
	Portability

	Development Roadmap
	Server Roadmap
	SQL Roadmap
	Embedded MonetDB Roadmap

	MonetDB Version 5
	Design Considerations
	Architecture Overview
	MonetDB Assembly Language (MAL)
	Execution Engine
	Session Scenarios
	Scenario management
	Server Management
	Start and Stop the Server
	Database Dumps
	Server Architecture
	Database Configuration
	Checkpoint and Recovery
	Embedded Server
	Mbedded Example
	Limitations for Embedded MonetDB

	Client Interfaces
	The Mapi Client Utility
	Online help

	Jdbc Client

	MonetDB Assembly Language (MAL)
	MAL Literals
	MAL Variables
	Instructions
	MAL Flow-of-control
	Exception handling
	Exception control
	Builtin exceptions

	Functions
	Polymorphic Functions
	C functions

	Factories
	Factory Ownership
	Complex Factories
	Materialized Views

	Type implementation
	MAL Type System
	Type Resolution
	User Defined Types
	Defining your own types

	Boxed Variables
	Session Box
	Garbage Collection
	Globale Environment

	Property Management
	Properties at the MAL level
	The cost model problem
	SQL case
	Implementation rules
	Property ADT implementation
	Predefined properties

	The MAL Interpreter
	MAL API
	Exception handling
	Garbage collection
	MAL runtime stack

	The MAL Optimizer
	The Optimizer Landscape
	Optimizer Dependencies
	Optimizer Building Blocks
	Building Your Own Optimizer
	Optimizer framework
	Lifespan analysis
	Flow analysis

	Optimizer Toolkit
	Access mode optimization
	Accumulator Evaluations
	Alias Removal
	Code Factorization
	Coercion Removal
	Common Subexpression Elimination
	Constant Expression Evaluation
	Costmodel Approach
	The dataflow optimizer
	Dead Code Removal
	Emptyset Reduction
	SQL specifics
	Garbage Collection
	Heuristic rewrites rules
	Join Paths
	Macro and Orcam Processing
	Known issues

	Memo-based Query Execution
	Merge Tables
	Multiplex Compilation
	BAT Partitions
	Peephole optimization
	Query Execution Plans
	Range Propagation
	The recycler
	Optimizer code wrapper
	Remote Queries
	Singleton Set Reduction
	Stack Reduction
	Strength Reduction

	The MAL Debugger
	Program Debugging
	Handling Breakpoints
	Profile Switches
	Program Inspection
	Runtime Inspection and Reflection
	Debugger Attachment

	The MAL Profiler
	Event Filtering
	Event Caching
	Monitoring Variables
	The Stethoscope

	The MAL Modules
	Module Loading
	Module file loading
	BAT Extensions
	BAT Buffer Pool
	Constants
	BAT Iterators
	Box definitions
	Client Management
	Factory management
	Inspection
	Input/Output module
	Language Extensions
	MAL debugger interface
	Manual Inspection
	MAPI interface
	Multiple association tables
	BAT Partition Manager
	Derived partitioning
	Using partitions
	Partition updates
	Partitioned results
	Partition iterators
	Partition selection

	Performance profiler
	Monet Event Logger
	Execution tracing

	PCRE library interface
	Remote querying functionality
	Statistics box.
	The table interface
	Tablet properties
	Scalar tablets
	Tablet dump/restore
	Front-end extension
	The commands
	Raw Load

	Transaction management
	The Inner Core
	Short Outline
	Rationale

	Interface Files
	Database Context
	GDK session handling

	Binary Association Tables
	GDK variant record type
	The BAT record
	Heap Management
	Internal HEAP Chunk Management
	BAT construction
	BUN manipulation
	BAT properties
	BAT manipulation
	BAT Input/Output
	Heap Storage Modes
	Printing
	BAT clustering

	BAT Buffer Pool
	GDK Extensibility
	Atomic Type Descriptors
	Atom Definition
	Atom Manipulation
	Unique OIDs
	Built-in Accelerator Functions
	Multilevel Storage Modes

	GDK Utilities
	GDK memory management
	GDK error handling

	Transaction Management
	Delta Management

	BAT Alignment and BAT views
	BAT Iterators
	simple sequential scan
	batloop where the current element can be deleted/updated
	sequential scan over deleted BUNs
	hash-table supported loop over BUNs
	specialized hashloops
	loop over a BAT with ordered tail

	Common BAT Operations
	BAT aggregates
	Alignment transformations
	BAT relational operators

	Aggregates Module
	Timers and Timed Interrupts
	BAT Algebra
	Basic array support
	Binary Association Tables
	Wrapping

	InformationFunctions
	Property management

	Synced BATs
	Role Management
	Accelerator Control
	BAT calculator
	NULL semantics
	BAT Coercion Routines
	BAT if-then-else multiplex expressions.
	Color multiplexes
	String multiplexes
	BAT math calculator
	The math module
	Time/Date multiplexes
	Basic arithmetic
	Performance Counters
	The group module
	Algorithms
	Cross Table (GRP)

	Lightweight Lock Module
	The Transaction Logger
	Multi-Attribute Equi-Join
	Priority queues
	System state information
	Unix standard library calls

	Application Programming Interfaces
	The Mapi Library
	Sample MAPI Application
	Command Summary
	Library Synopsis
	Error Message
	Mapi Function Reference
	Connecting and Disconnecting
	Sending Queries
	Getting Results
	Errors
	Parameters
	Miscellaneous

	MonetDB Perl Library
	A Simple Perl Example

	MonetDB PHP Library
	A Simple PHP Example

	The MonetDB MAPI and SQL client python API
	Introduction
	Changes
	Installation
	Documentation
	Examples
	MonetDB JDBC Driver
	Getting the driver Jar
	Compiling the driver (using ant, optional)
	Testing the driver using the JdbcClient utility
	Using the driver in your Java programs
	A sample Java program

	MonetDB ODBC Driver
	Microsoft Excel demo
	Installing the MonetDB ODBC Driver for unixODBC

	Instruction Summary
	Instruction Help

